These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


311 related items for PubMed ID: 16034825

  • 1. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL, Vanderweele DJ, Rudin CM.
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [Abstract] [Full Text] [Related]

  • 2. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X, Takagi H.
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [Abstract] [Full Text] [Related]

  • 3. Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species.
    Skoneczna A, Miciałkiewicz A, Skoneczny M.
    Free Radic Biol Med; 2007 May 01; 42(9):1409-20. PubMed ID: 17395014
    [Abstract] [Full Text] [Related]

  • 4. Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: protective effect of Bcl-xL.
    Trancíková A, Weisová P, Kissová I, Zeman I, Kolarov J.
    FEMS Yeast Res; 2004 Nov 01; 5(2):149-56. PubMed ID: 15489198
    [Abstract] [Full Text] [Related]

  • 5. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X, Takagi H.
    J Biochem; 2005 Oct 01; 138(4):391-7. PubMed ID: 16272133
    [Abstract] [Full Text] [Related]

  • 6. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M, Radhika V, Bamne MN, Ramos R, Briggs R, Dhanasekaran DN.
    Biotechnol Prog; 2005 Oct 01; 21(5):1373-9. PubMed ID: 16209540
    [Abstract] [Full Text] [Related]

  • 7. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae.
    Moraitis C, Curran BP.
    Yeast; 2004 Mar 01; 21(4):313-23. PubMed ID: 15042591
    [Abstract] [Full Text] [Related]

  • 8. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast.
    Kumar A, John L, Alam MM, Gupta A, Sharma G, Pillai B, Sengupta S.
    Biochem J; 2006 May 15; 396(1):61-9. PubMed ID: 16433631
    [Abstract] [Full Text] [Related]

  • 9. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA, Amaral C, Batista-Nascimento L, Santos C, Ferreira RB, Devaux F, Eleutherio EC, Rodrigues-Pousada C.
    Biochem J; 2008 Sep 01; 414(2):301-11. PubMed ID: 18439143
    [Abstract] [Full Text] [Related]

  • 10. Human p53 induces cell death and downregulates thioredoxin expression in Saccharomyces cerevisiae.
    Hadj Amor IY, Smaoui K, Chaabène I, Mabrouk I, Djemal L, Elleuch H, Allouche M, Mokdad-Gargouri R, Gargouri A.
    FEMS Yeast Res; 2008 Dec 01; 8(8):1254-62. PubMed ID: 19054132
    [Abstract] [Full Text] [Related]

  • 11. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.
    Iinoya K, Kotani T, Sasano Y, Takagi H.
    Biotechnol Bioeng; 2009 Jun 01; 103(2):341-52. PubMed ID: 19170243
    [Abstract] [Full Text] [Related]

  • 12. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS, Moon HY, Yun HS, Jin I.
    J Microbiol; 2006 Oct 01; 44(5):492-501. PubMed ID: 17082742
    [Abstract] [Full Text] [Related]

  • 13. Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis.
    Medina-Silva R, Barros MP, Galhardo RS, Netto LE, Colepicolo P, Menck CF.
    Res Microbiol; 2006 Apr 01; 157(3):275-81. PubMed ID: 16171982
    [Abstract] [Full Text] [Related]

  • 14. Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae.
    Nargund AM, Avery SV, Houghton JE.
    Apoptosis; 2008 Jun 01; 13(6):811-21. PubMed ID: 18463984
    [Abstract] [Full Text] [Related]

  • 15. Methyl beta-cyclodextrin reduces accumulation of reactive oxygen species and cell death in yeast.
    Du W, Ayscough KR.
    Free Radic Biol Med; 2009 Jun 01; 46(11):1478-87. PubMed ID: 19272445
    [Abstract] [Full Text] [Related]

  • 16. Oxidative stress responses of the yeast Saccharomyces cerevisiae.
    Jamieson DJ.
    Yeast; 1998 Dec 01; 14(16):1511-27. PubMed ID: 9885153
    [Abstract] [Full Text] [Related]

  • 17. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K, Fischer BB, Rüfenacht K, Eggen RI.
    Yeast; 2006 Jul 30; 23(10):741-50. PubMed ID: 16862604
    [Abstract] [Full Text] [Related]

  • 18. Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death.
    Camougrand N, Kissová I, Velours G, Manon S.
    FEMS Yeast Res; 2004 Nov 30; 5(2):133-40. PubMed ID: 15489196
    [Abstract] [Full Text] [Related]

  • 19. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants.
    Amari F, Fettouche A, Samra MA, Kefalas P, Kampranis SC, Makris AM.
    J Agric Food Chem; 2008 Dec 24; 56(24):11740-51. PubMed ID: 19049288
    [Abstract] [Full Text] [Related]

  • 20. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.
    Nishimura A, Kotani T, Sasano Y, Takagi H.
    FEMS Yeast Res; 2010 Sep 24; 10(6):687-98. PubMed ID: 20550582
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.