These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention. Xiao Y, Freed AS, Jones TT, Makrodimitris K, O'Connell JP, Fernandez EJ. Biotechnol Bioeng; 2006 Apr 20; 93(6):1177-89. PubMed ID: 16444741 [Abstract] [Full Text] [Related]
4. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces. Gospodarek AM, Sun W, O'Connell JP, Fernandez EJ. J Chromatogr A; 2014 Dec 05; 1371():204-19. PubMed ID: 25456599 [Abstract] [Full Text] [Related]
5. Separation of proteins by hydrophobic interaction chromatography at low salt concentration. Kato Y, Nakamura K, Kitamura T, Moriyama H, Hasegawa M, Sasaki H. J Chromatogr A; 2002 Sep 20; 971(1-2):143-9. PubMed ID: 12350109 [Abstract] [Full Text] [Related]
6. Automated hydrophobic interaction chromatography column selection for use in protein purification. Murphy PJ, Stone OJ, Anderson ME. J Vis Exp; 2011 Sep 21; (55):. PubMed ID: 21968976 [Abstract] [Full Text] [Related]
7. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography. Jakob LA, Beyer B, Janeiro Ferreira C, Lingg N, Jungbauer A, Tscheließnig R. J Chromatogr A; 2021 Jul 19; 1649():462231. PubMed ID: 34038776 [Abstract] [Full Text] [Related]
8. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein. Lin FY, Chen WY, Hearn MT. Anal Chem; 2001 Aug 15; 73(16):3875-83. PubMed ID: 11534710 [Abstract] [Full Text] [Related]
9. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography. Xiao Y, Rathore A, O'Connell JP, Fernandez EJ. J Chromatogr A; 2007 Jul 20; 1157(1-2):197-206. PubMed ID: 17524412 [Abstract] [Full Text] [Related]
10. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography. Hackemann E, Hasse H. J Chromatogr A; 2017 Oct 27; 1521():73-79. PubMed ID: 28947205 [Abstract] [Full Text] [Related]
11. Assessment of COMT isolation by HIC using a dual salt system and low temperature. Nunes VS, Bonifácio MJ, Queiroz JA, Passarinha LA. Biomed Chromatogr; 2010 Aug 27; 24(8):858-62. PubMed ID: 20024892 [Abstract] [Full Text] [Related]
18. Effect of mass overloading on binding and elution of unstable proteins in hydrophobic interaction chromatography. Muca R, Marek W, Żurawski M, Piątkowski W, Antos D. J Chromatogr A; 2017 Apr 07; 1492():79-88. PubMed ID: 28284765 [Abstract] [Full Text] [Related]
19. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins. Müller E, Josic D, Schröder T, Moosmann A. J Chromatogr A; 2010 Jul 09; 1217(28):4696-703. PubMed ID: 20570270 [Abstract] [Full Text] [Related]
20. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation. Zhang L, Lu D, Liu Z. J Chromatogr A; 2009 Mar 20; 1216(12):2483-90. PubMed ID: 19178912 [Abstract] [Full Text] [Related] Page: [Next] [New Search]