These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 16039044

  • 21. Effect of N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) on Cr(VI) reduction by Fe(II).
    Tzou YM, Wang MK, Loeppert RH.
    Chemosphere; 2003 Jun; 51(9):993-1000. PubMed ID: 12697190
    [Abstract] [Full Text] [Related]

  • 22. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
    Arroyo MG, Pérez-Herranz V, Montañés MT, García-Antón J, Guiñón JL.
    J Hazard Mater; 2009 Sep 30; 169(1-3):1127-33. PubMed ID: 19464794
    [Abstract] [Full Text] [Related]

  • 23. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron.
    Oh YJ, Song H, Shin WS, Choi SJ, Kim YH.
    Chemosphere; 2007 Jan 30; 66(5):858-65. PubMed ID: 16872667
    [Abstract] [Full Text] [Related]

  • 24. Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria.
    Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M.
    Appl Microbiol Biotechnol; 2002 Nov 30; 60(3):352-60. PubMed ID: 12436319
    [Abstract] [Full Text] [Related]

  • 25. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors.
    Ganguli A, Tripathi AK.
    Appl Microbiol Biotechnol; 2002 Mar 30; 58(3):416-20. PubMed ID: 11935196
    [Abstract] [Full Text] [Related]

  • 26. Kinetics of hexavalent chromium reduction by scrap iron.
    Gheju M, Iovi A.
    J Hazard Mater; 2006 Jul 31; 135(1-3):66-73. PubMed ID: 16386842
    [Abstract] [Full Text] [Related]

  • 27. Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater lake.
    Wani R, Kodam KM, Gawai KR, Dhakephalkar PK.
    Appl Microbiol Biotechnol; 2007 Jun 31; 75(3):627-32. PubMed ID: 17361433
    [Abstract] [Full Text] [Related]

  • 28. Chromate-reducing activity of Hansenula polymorpha recombinant cells over-producing flavocytochrome b₂.
    Smutok O, Broda D, Smutok H, Dmytruk K, Gonchar M.
    Chemosphere; 2011 Apr 31; 83(4):449-54. PubMed ID: 21315405
    [Abstract] [Full Text] [Related]

  • 29. Chromate reduction by zero-valent Al metal as catalyzed by polyoxometalate.
    Lin CJ, Wang SL, Huang PM, Tzou YM, Liu JC, Chen CC, Chen JH, Lin C.
    Water Res; 2009 Dec 31; 43(20):5015-22. PubMed ID: 19729183
    [Abstract] [Full Text] [Related]

  • 30. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T, Rao P, Lo IM.
    Sci Total Environ; 2009 May 01; 407(10):3407-14. PubMed ID: 19232679
    [Abstract] [Full Text] [Related]

  • 31. Enhanced chromate reduction by resting Escherichia coli cells in the presence of quinone redox mediators.
    Liu G, Yang H, Wang J, Jin R, Zhou J, Lv H.
    Bioresour Technol; 2010 Nov 01; 101(21):8127-31. PubMed ID: 20584598
    [Abstract] [Full Text] [Related]

  • 32. Application of polyaniline for the reduction of toxic Cr(VI) in water.
    Olad A, Nabavi R.
    J Hazard Mater; 2007 Aug 25; 147(3):845-51. PubMed ID: 17329022
    [Abstract] [Full Text] [Related]

  • 33. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR, Coker VS, Lloyd JR, Vaughan DJ, Pattrick RA.
    Environ Sci Technol; 2014 Oct 07; 48(19):11337-42. PubMed ID: 25196156
    [Abstract] [Full Text] [Related]

  • 34. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y, Zhao D.
    Water Res; 2007 May 07; 41(10):2101-8. PubMed ID: 17412389
    [Abstract] [Full Text] [Related]

  • 35. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron.
    Weng CH, Lin YT, Lin TY, Kao CM.
    J Hazard Mater; 2007 Oct 22; 149(2):292-302. PubMed ID: 17485164
    [Abstract] [Full Text] [Related]

  • 36. A mechanism study of light-induced Cr(VI) reduction in an acidic solution.
    Wang SL, Chen CC, Tzou YM, Hsu CL, Chen JH, Lin CF.
    J Hazard Mater; 2009 May 15; 164(1):223-8. PubMed ID: 18789578
    [Abstract] [Full Text] [Related]

  • 37. Effect of chromium(VI) action on Arthrobacter oxydans.
    Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikova NA, Tsibakhashvili NY, Tabatadze LV, Lejava LV, Asanishvili LL, Holman HY.
    Curr Microbiol; 2004 Nov 15; 49(5):321-6. PubMed ID: 15486705
    [Abstract] [Full Text] [Related]

  • 38. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J, Mao JD, Gong H, Lan Y.
    J Hazard Mater; 2009 Sep 15; 168(2-3):1569-74. PubMed ID: 19372002
    [Abstract] [Full Text] [Related]

  • 39. Characterization of chromate-resistant and -reducing bacteria by traditional means and by a high-throughput phenomic technique for bioremediation purposes.
    Viti C, Decorosi F, Tatti E, Giovannetti L.
    Biotechnol Prog; 2007 Sep 15; 23(3):553-9. PubMed ID: 17385890
    [Abstract] [Full Text] [Related]

  • 40. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden.
    Dey S, Paul AK.
    J Hazard Mater; 2012 Apr 30; 213-214():200-6. PubMed ID: 22361630
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.