These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 16040000

  • 1. Protein fragment complementation in M.HhaI DNA methyltransferase.
    Choe W, Chandrasegaran S, Ostermeier M.
    Biochem Biophys Res Commun; 2005 Sep 09; 334(4):1233-40. PubMed ID: 16040000
    [Abstract] [Full Text] [Related]

  • 2. M.(phi)BssHII, a novel cytosine-C5-DNA-methyltransferase with target-recognizing domains at separated locations of the enzyme.
    Sethmann S, Ceglowski P, Willert J, Iwanicka-Nowicka R, Trautner TA, Walter J.
    EMBO J; 1999 Jun 15; 18(12):3502-8. PubMed ID: 10369689
    [Abstract] [Full Text] [Related]

  • 3. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B, Shieh FK, De Los Rios S, Perona JJ, Reich NO.
    J Mol Biol; 2006 Sep 15; 362(2):334-46. PubMed ID: 16919299
    [Abstract] [Full Text] [Related]

  • 4. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H, Marquez VE, Marasco CJ, Sufrin JR, O'gara M, Cheng X.
    J Mol Biol; 1999 Feb 05; 285(5):2021-34. PubMed ID: 9925782
    [Abstract] [Full Text] [Related]

  • 5. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK, Youngblood B, Reich NO.
    J Mol Biol; 2006 Sep 22; 362(3):516-27. PubMed ID: 16926025
    [Abstract] [Full Text] [Related]

  • 6. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases.
    Trautner TA, Pawlek B, Behrens B, Willert J.
    EMBO J; 1996 Mar 15; 15(6):1434-42. PubMed ID: 8635476
    [Abstract] [Full Text] [Related]

  • 7. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B, Shieh FK, Buller F, Bullock T, Reich NO.
    Biochemistry; 2007 Jul 31; 46(30):8766-75. PubMed ID: 17616174
    [Abstract] [Full Text] [Related]

  • 8. Characterization of the large subunit of EcoHK31I methyltransferase by structural modeling and mutagenesis.
    Mak AN, Fung WT, Kong KP, Poon AW, Ngai SM, Shaw PC.
    Biol Chem; 2007 Mar 31; 388(3):265-71. PubMed ID: 17338633
    [Abstract] [Full Text] [Related]

  • 9. Determinants of sequence-specific DNA methylation: target recognition and catalysis are coupled in M.HhaI.
    Youngblood B, Buller F, Reich NO.
    Biochemistry; 2006 Dec 26; 45(51):15563-72. PubMed ID: 17176077
    [Abstract] [Full Text] [Related]

  • 10. Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization.
    Cohen HM, Tawfik DS, Griffiths AD.
    Protein Eng Des Sel; 2004 Jan 26; 17(1):3-11. PubMed ID: 14985532
    [Abstract] [Full Text] [Related]

  • 11. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase.
    O'Gara M, Roberts RJ, Cheng X.
    J Mol Biol; 1996 Nov 08; 263(4):597-606. PubMed ID: 8918941
    [Abstract] [Full Text] [Related]

  • 12. M.BssHII, a multispecific cytosine-C5-DNA-methyltransferase with unusual target recognizing properties.
    Schumann J, Walter J, Willert J, Wild C, Koch D, Trautner TA.
    J Mol Biol; 1996 Apr 19; 257(5):949-59. PubMed ID: 8632477
    [Abstract] [Full Text] [Related]

  • 13. Homology modeling of the CG-specific DNA methyltransferase SssI and its complexes with DNA and AdoHcy.
    Koudan EV, Bujnicki JM, Gromova ES.
    J Biomol Struct Dyn; 2004 Dec 19; 22(3):339-45. PubMed ID: 15473707
    [Abstract] [Full Text] [Related]

  • 14. The recognition pathway for the DNA cytosine methyltransferase M.HhaI.
    Zhou H, Purdy MM, Dahlquist FW, Reich NO.
    Biochemistry; 2009 Aug 25; 48(33):7807-16. PubMed ID: 19580326
    [Abstract] [Full Text] [Related]

  • 15. Long-range structural and dynamical changes induced by cofactor binding in DNA methyltransferase M.HhaI.
    Zhou H, Shatz W, Purdy MM, Fera N, Dahlquist FW, Reich NO.
    Biochemistry; 2007 Jun 19; 46(24):7261-8. PubMed ID: 17523600
    [Abstract] [Full Text] [Related]

  • 16. Identification of amino acids important for target recognition by the DNA:m5C methyltransferase M.NgoPII by alanine-scanning mutagenesis of residues at the protein-DNA interface.
    Radlinska M, Kondrzycka-Dada A, Piekarowicz A, Bujnicki JM.
    Proteins; 2005 Feb 01; 58(2):263-70. PubMed ID: 15558546
    [Abstract] [Full Text] [Related]

  • 17. Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target.
    Lange C, Wild C, Trautner TA.
    EMBO J; 1996 Mar 15; 15(6):1443-50. PubMed ID: 8635477
    [Abstract] [Full Text] [Related]

  • 18. Homology modelling of the DNA 5mC methyltransferase M.BssHII. Is permutation of functional subdomains common to all subfamilies of DNA methyltransferases?
    Bujnicki JM.
    Int J Biol Macromol; 2000 Jun 13; 27(3):195-204. PubMed ID: 10828365
    [Abstract] [Full Text] [Related]

  • 19. Transient DNA binding by a proteolytic peptide from m5C-DNA methyltransferase MspI.
    Bhattacharya SK, Dubey AK.
    J Biochem Mol Biol Biophys; 2002 Oct 13; 6(5):357-64. PubMed ID: 12385973
    [Abstract] [Full Text] [Related]

  • 20. Complementation between inactive fragments of SssI DNA methyltransferase.
    Slaska-Kiss K, Tímár E, Kiss A.
    BMC Mol Biol; 2012 May 30; 13():17. PubMed ID: 22646482
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.