These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 16044287

  • 1. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process.
    Bauer R, Katsikis N, Varga S, Hekmat D.
    Bioprocess Biosyst Eng; 2005 Nov; 28(1):37-43. PubMed ID: 16044287
    [Abstract] [Full Text] [Related]

  • 2. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans.
    Hekmat D, Bauer R, Fricke J.
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):109-16. PubMed ID: 14598160
    [Abstract] [Full Text] [Related]

  • 3. Development of a transient segregated mathematical model of the semicontinuous microbial production process of dihydroxyacetone.
    Bauer R, Hekmat D.
    Biotechnol Prog; 2006 Dec; 22(1):278-84. PubMed ID: 16454520
    [Abstract] [Full Text] [Related]

  • 4. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH, Wu J, Liu X, Lin JP, Wei DZ, Chen H.
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [Abstract] [Full Text] [Related]

  • 5. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC, Zheng YG.
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [Abstract] [Full Text] [Related]

  • 6. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C, Degner U, Bringer-Meyer S, Herrmann U.
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [Abstract] [Full Text] [Related]

  • 7. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112.
    Hu ZC, Liu ZQ, Zheng YG, Shen YC.
    J Microbiol Biotechnol; 2010 Feb; 20(2):340-5. PubMed ID: 20208438
    [Abstract] [Full Text] [Related]

  • 8. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor.
    Hu ZC, Zheng YG, Shen YC.
    Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784
    [Abstract] [Full Text] [Related]

  • 9. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone.
    Wei S, Song Q, Wei D.
    Prep Biochem Biotechnol; 2007 Jul; 37(2):113-21. PubMed ID: 17454822
    [Abstract] [Full Text] [Related]

  • 10. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
    Habe H, Fukuoka T, Morita T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K.
    Biosci Biotechnol Biochem; 2010 Jul; 74(7):1391-5. PubMed ID: 20622460
    [Abstract] [Full Text] [Related]

  • 11. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone.
    Wei S, Song Q, Wei D.
    Prep Biochem Biotechnol; 2007 Jul; 37(1):67-76. PubMed ID: 17134984
    [Abstract] [Full Text] [Related]

  • 12. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor.
    Hu ZC, Tian SY, Ruan LJ, Zheng YG.
    Bioresour Technol; 2017 Jun; 233():144-149. PubMed ID: 28279907
    [Abstract] [Full Text] [Related]

  • 13. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation.
    Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC.
    Prep Biochem Biotechnol; 2012 Jun; 42(1):15-28. PubMed ID: 22239705
    [Abstract] [Full Text] [Related]

  • 14. High-Yield Production of Dihydroxyacetone from Crude Glycerol in Fed-Batch Cultures of Gluconobacter oxydans.
    Górska K, Garncarek Z.
    Molecules; 2024 Jun 20; 29(12):. PubMed ID: 38930996
    [Abstract] [Full Text] [Related]

  • 15. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR).
    Zhou X, Zhou X, Xu Y, Yu S.
    Bioprocess Biosyst Eng; 2016 Aug 20; 39(8):1315-8. PubMed ID: 27021347
    [Abstract] [Full Text] [Related]

  • 16. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F, Weber U, Ziegler T, Gervais A, Mastrangeli R, Crisci C, Rossi M, Bernard A, von Stockar U, Kadouri A.
    J Biotechnol; 2006 May 03; 123(1):106-16. PubMed ID: 16324762
    [Abstract] [Full Text] [Related]

  • 17. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904.
    Dikshit PK, Moholkar VS.
    Bioresour Technol; 2016 Sep 03; 216():1058-65. PubMed ID: 26873288
    [Abstract] [Full Text] [Related]

  • 18. [Advance in dihydroxyacetone production by microbial fermentation].
    Xu X, Chen X, Jin M, Wu X, Wang X.
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun 03; 25(6):903-8. PubMed ID: 19777820
    [Abstract] [Full Text] [Related]

  • 19. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans.
    Zhou X, Xu Y, Yu S.
    Appl Biochem Biotechnol; 2016 Jan 03; 178(1):1-8. PubMed ID: 26378011
    [Abstract] [Full Text] [Related]

  • 20. Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way.
    Lu L, Wei L, Zhu K, Wei D, Hua Q.
    Bioresour Technol; 2012 Aug 03; 117():317-24. PubMed ID: 22617040
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.