These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 16045282
1. "In-house likeness": comparison of large compound collections using artificial neural networks. Muresan S, Sadowski J. J Chem Inf Model; 2005; 45(4):888-93. PubMed ID: 16045282 [Abstract] [Full Text] [Related]
2. Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists' intuition. Takaoka Y, Endo Y, Yamanobe S, Kakinuma H, Okubo T, Shimazaki Y, Ota T, Sumiya S, Yoshikawa K. J Chem Inf Comput Sci; 2003; 43(4):1269-75. PubMed ID: 12870920 [Abstract] [Full Text] [Related]
3. Applications of self-organizing neural networks in virtual screening and diversity selection. Selzer P, Ertl P. J Chem Inf Model; 2006; 46(6):2319-23. PubMed ID: 17125175 [Abstract] [Full Text] [Related]
4. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. Zernov VV, Balakin KV, Ivaschenko AA, Savchuk NP, Pletnev IV. J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457 [Abstract] [Full Text] [Related]
5. A scoring scheme for discriminating between drugs and nondrugs. Sadowski J, Kubinyi H. J Med Chem; 1998 Aug 27; 41(18):3325-9. PubMed ID: 9719584 [Abstract] [Full Text] [Related]
6. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression. Chen HF. Chem Biol Drug Des; 2009 Aug 27; 74(2):142-7. PubMed ID: 19549084 [Abstract] [Full Text] [Related]
7. Synthetic library design. Huwe CM. Drug Discov Today; 2006 Aug 27; 11(15-16):763-7. PubMed ID: 16846805 [Abstract] [Full Text] [Related]
8. Classifying "kinase inhibitor-likeness" by using machine-learning methods. Briem H, Günther J. Chembiochem; 2005 Mar 27; 6(3):558-66. PubMed ID: 15696507 [Abstract] [Full Text] [Related]
9. Data structures and computational tools for the extraction of SAR information from large compound sets. Wawer M, Lounkine E, Wassermann AM, Bajorath J. Drug Discov Today; 2010 Aug 27; 15(15-16):630-9. PubMed ID: 20547243 [Abstract] [Full Text] [Related]
10. Emerging chemical patterns: a new methodology for molecular classification and compound selection. Auer J, Bajorath J. J Chem Inf Model; 2006 Aug 27; 46(6):2502-14. PubMed ID: 17125191 [Abstract] [Full Text] [Related]
11. Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions. Aires-de-Sousa J, Gasteiger J. J Comb Chem; 2005 Aug 27; 7(2):298-301. PubMed ID: 15762759 [Abstract] [Full Text] [Related]
12. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. Sauer WH, Schwarz MK. J Chem Inf Comput Sci; 2003 Aug 27; 43(3):987-1003. PubMed ID: 12767158 [Abstract] [Full Text] [Related]
13. Selective optimization of side activities: another way for drug discovery. Wermuth CG. J Med Chem; 2004 Mar 11; 47(6):1303-14. PubMed ID: 14998318 [No Abstract] [Full Text] [Related]
14. CLEVER: pipeline for designing in silico chemical libraries. Song CM, Bernardo PH, Chai CL, Tong JC. J Mol Graph Model; 2009 Jan 11; 27(5):578-83. PubMed ID: 18986817 [Abstract] [Full Text] [Related]
19. A sorcerer's apprentice and The Rule of Five: from rule-of-thumb to commandment and beyond. Abad-Zapatero C. Drug Discov Today; 2007 Dec 11; 12(23-24):995-7. PubMed ID: 18061876 [No Abstract] [Full Text] [Related]