These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 16051474

  • 1. The effect of the presence of valinomycin on the interfacial tension of lecithin membrane.
    Petelska AD, Naumowicz M, Figaszewski ZA.
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):158-62. PubMed ID: 16051474
    [Abstract] [Full Text] [Related]

  • 2. The effect of interaction between K(+) ions and gramicidin D on the lecithin membrane interfacial tension.
    Petelska AD, Naumowicz M, Figaszewski ZA.
    Bioelectrochemistry; 2005 Feb; 65(2):143-8. PubMed ID: 15713565
    [Abstract] [Full Text] [Related]

  • 3. Impedance analysis of phosphatidylcholine membranes modified with valinomycin.
    Naumowicz M, Kotynska J, Petelska A, Figaszewski Z.
    Eur Biophys J; 2006 Feb; 35(3):239-46. PubMed ID: 16283290
    [Abstract] [Full Text] [Related]

  • 4. [Change in the state of a lecithin molecular layer at the heptane-aqueous KCl solutions interface on the introduction of the ionophore, valinomycin].
    Shliakhter TA, Lev AA.
    Tsitologiia; 1980 Oct; 22(10):1193-9. PubMed ID: 7445085
    [Abstract] [Full Text] [Related]

  • 5. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD, Naumowicz M, Figaszewski ZA.
    Cell Biochem Biophys; 2006 Oct; 44(2):205-11. PubMed ID: 16456222
    [Abstract] [Full Text] [Related]

  • 6. How Valinomycin Ionophores Enter and Transport K+ across Model Lipid Bilayer Membranes.
    Su Z, Ran X, Leitch JJ, Schwan AL, Faragher R, Lipkowski J.
    Langmuir; 2019 Dec 24; 35(51):16935-16943. PubMed ID: 31742409
    [Abstract] [Full Text] [Related]

  • 7. The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes.
    Rose L, Jenkins AT.
    Bioelectrochemistry; 2007 May 24; 70(2):387-93. PubMed ID: 16875886
    [Abstract] [Full Text] [Related]

  • 8. Interfacial tension of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane.
    Petelska AD, Figaszewski ZA.
    Biophys Chem; 2006 Apr 01; 120(3):199-206. PubMed ID: 16380205
    [Abstract] [Full Text] [Related]

  • 9. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L, Moncelli MR, Naumann R, Guidelli R.
    J Am Chem Soc; 2005 Sep 28; 127(38):13316-23. PubMed ID: 16173764
    [Abstract] [Full Text] [Related]

  • 10. Influence of the lipid environment on valinomycin structure and cation complex formation.
    Halsey CM, Benham DA, JiJi RD, Cooley JW.
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct 28; 96():200-6. PubMed ID: 22683555
    [Abstract] [Full Text] [Related]

  • 11. The effect of solution electrolytes on the uptake of photosensitizers by liposomal membranes: a salting-out effect.
    Minnes R, Ytzhak S, Weitman H, Ehrenberg B.
    Chem Phys Lipids; 2008 Sep 28; 155(1):38-42. PubMed ID: 18606157
    [Abstract] [Full Text] [Related]

  • 12. Impedance analysis of valinomycin activity in nano-BLMs.
    Kepplinger C, Höfer I, Steinem C.
    Chem Phys Lipids; 2009 Aug 28; 160(2):109-13. PubMed ID: 19446541
    [Abstract] [Full Text] [Related]

  • 13. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol.
    Naumowicz M, Petelska AD, Figaszewski ZA.
    Cell Mol Biol Lett; 2003 Aug 28; 8(1):5-18. PubMed ID: 12655351
    [Abstract] [Full Text] [Related]

  • 14. [Effect of valinomycin on the structure of water-lecithin liposomes].
    Sokolova AE, Shchagina LV, Malev VV.
    Tsitologiia; 1976 Aug 28; 18(6):744-6. PubMed ID: 1027163
    [Abstract] [Full Text] [Related]

  • 15. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.
    Stark G, Ketterer B, Benz R, Läuger P.
    Biophys J; 1971 Dec 28; 11(12):981-94. PubMed ID: 4332419
    [Abstract] [Full Text] [Related]

  • 16. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA, Vattulainen I.
    J Phys Chem B; 2008 Feb 21; 112(7):1953-62. PubMed ID: 18225878
    [Abstract] [Full Text] [Related]

  • 17. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics.
    Duax WL, Griffin JF, Langs DA, Smith GD, Grochulski P, Pletnev V, Ivanov V.
    Biopolymers; 1996 Feb 21; 40(1):141-55. PubMed ID: 8541445
    [Abstract] [Full Text] [Related]

  • 18. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK, Johnson BR, Symonds PH, Imperato G, Bushby RJ, Gwyer JD, van Berkel C, Evans SD, Jeuken LJ.
    Chemphyschem; 2010 Jul 12; 11(10):2191-8. PubMed ID: 20512836
    [Abstract] [Full Text] [Related]

  • 19. Second harmonic studies of ions crossing liposome membranes in real time.
    Liu J, Subir M, Nguyen K, Eisenthal KB.
    J Phys Chem B; 2008 Dec 04; 112(48):15263-6. PubMed ID: 18989915
    [Abstract] [Full Text] [Related]

  • 20. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration.
    Teplova VV, Mikkola R, Tonshin AA, Saris NE, Salkinoja-Salonen MS.
    Toxicol Appl Pharmacol; 2006 Jan 01; 210(1-2):39-46. PubMed ID: 16039680
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.