These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 16054157

  • 1. Oxidative coupling and the irreversible adsorption of phenol by graphite.
    de Oliveira Pimenta AC, Kilduff JE.
    J Colloid Interface Sci; 2006 Jan 15; 293(2):278-89. PubMed ID: 16054157
    [Abstract] [Full Text] [Related]

  • 2. Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer.
    Pan B, Pan B, Zhang W, Zhang Q, Zhang Q, Zheng S.
    J Hazard Mater; 2008 Sep 15; 157(2-3):293-9. PubMed ID: 18249494
    [Abstract] [Full Text] [Related]

  • 3. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material.
    Singh KP, Malik A, Sinha S, Ojha P.
    J Hazard Mater; 2008 Feb 11; 150(3):626-41. PubMed ID: 17582681
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Comparative studies on adsorptive removal of phenol by three agro-based carbons: equilibrium and isotherm studies.
    Srihari V, Das A.
    Ecotoxicol Environ Saf; 2008 Sep 11; 71(1):274-83. PubMed ID: 17915320
    [Abstract] [Full Text] [Related]

  • 6. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material.
    Hameed BH, Rahman AA.
    J Hazard Mater; 2008 Dec 30; 160(2-3):576-81. PubMed ID: 18434009
    [Abstract] [Full Text] [Related]

  • 7. Removal of phenol from aqueous phase by using neutralized red mud.
    Tor A, Cengeloglu Y, Aydin ME, Ersoz M.
    J Colloid Interface Sci; 2006 Aug 15; 300(2):498-503. PubMed ID: 16696997
    [Abstract] [Full Text] [Related]

  • 8. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol.
    Alvarez PM, Beltrán FJ, Gómez-Serrano V, Jaramillo J, Rodríguez EM.
    Water Res; 2004 Apr 15; 38(8):2155-65. PubMed ID: 15087197
    [Abstract] [Full Text] [Related]

  • 9. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders.
    Lin K, Pan J, Chen Y, Cheng R, Xu X.
    J Hazard Mater; 2009 Jan 15; 161(1):231-40. PubMed ID: 18573599
    [Abstract] [Full Text] [Related]

  • 10. Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO(2) towards phenol.
    An F, Gao B, Feng X.
    J Hazard Mater; 2008 Sep 15; 157(2-3):286-92. PubMed ID: 18243547
    [Abstract] [Full Text] [Related]

  • 11. Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: equilibrium and kinetics.
    Vázquez G, González-Alvarez J, García AI, Freire MS, Antorrena G.
    Bioresour Technol; 2007 May 15; 98(8):1535-40. PubMed ID: 16935496
    [Abstract] [Full Text] [Related]

  • 12. Adsorption of phenol on a novel adsorption material PEI/SiO2.
    An F, Gao B.
    J Hazard Mater; 2008 Apr 15; 152(3):1186-91. PubMed ID: 17854987
    [Abstract] [Full Text] [Related]

  • 13. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models.
    Ozkaya B.
    J Hazard Mater; 2006 Feb 28; 129(1-3):158-63. PubMed ID: 16198050
    [Abstract] [Full Text] [Related]

  • 14. Batch adsorption of phenol onto physiochemical-activated coconut shell.
    Mohd Din AT, Hameed BH, Ahmad AL.
    J Hazard Mater; 2009 Jan 30; 161(2-3):1522-9. PubMed ID: 18562090
    [Abstract] [Full Text] [Related]

  • 15. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.
    Nabais JM, Gomes JA, Suhas, Carrott PJ, Laginhas C, Roman S.
    J Hazard Mater; 2009 Aug 15; 167(1-3):904-10. PubMed ID: 19233559
    [Abstract] [Full Text] [Related]

  • 16. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.
    Hartono T, Wang S, Ma Q, Zhu Z.
    J Colloid Interface Sci; 2009 May 01; 333(1):114-9. PubMed ID: 19233379
    [Abstract] [Full Text] [Related]

  • 17. Unexpected difference in phenol sorption on PTMA- and BTMA-bentonite.
    Majdan M, Bujacka M, Sabah E, Gładysz-Płaska A, Pikus S, Sternik D, Komosa Z, Padewski A.
    J Environ Manage; 2009 Oct 01; 91(1):195-205. PubMed ID: 19716648
    [Abstract] [Full Text] [Related]

  • 18. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions.
    Alvarez PM, García-Araya JF, Beltrán FJ, Masa FJ, Medina F.
    J Colloid Interface Sci; 2005 Mar 15; 283(2):503-12. PubMed ID: 15721926
    [Abstract] [Full Text] [Related]

  • 19. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J, Chen C, Zhu X, Wang X.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1542-50. PubMed ID: 18650001
    [Abstract] [Full Text] [Related]

  • 20. Role of amination of a polymeric adsorbent on phenol adsorption from aqueous solution.
    Pan BC, Xiong Y, Su Q, Li AM, Chen JL, Zhang QX.
    Chemosphere; 2003 Jun 15; 51(9):953-62. PubMed ID: 12697186
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.