These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 16054644
1. Amyloid-like fibril formation of co-chaperonin GroES: nucleation and extension prefer different degrees of molecular compactness. Higurashi T, Yagi H, Mizobata T, Kawata Y. J Mol Biol; 2005 Sep 02; 351(5):1057-69. PubMed ID: 16054644 [Abstract] [Full Text] [Related]
2. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence. Yagi H, Sato A, Yoshida A, Hattori Y, Hara M, Shimamura J, Sakane I, Hongo K, Mizobata T, Kawata Y. J Mol Biol; 2008 Apr 11; 377(5):1593-606. PubMed ID: 18329043 [Abstract] [Full Text] [Related]
3. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Vernaglia BA, Huang J, Clark ED. Biomacromolecules; 2004 Apr 11; 5(4):1362-70. PubMed ID: 15244452 [Abstract] [Full Text] [Related]
4. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model. Higurashi T, Nosaka K, Mizobata T, Nagai J, Kawata Y. J Mol Biol; 1999 Aug 20; 291(3):703-13. PubMed ID: 10448048 [Abstract] [Full Text] [Related]
5. Amyloid fibril formation of alpha-synuclein is accelerated by preformed amyloid seeds of other proteins: implications for the mechanism of transmissible conformational diseases. Yagi H, Kusaka E, Hongo K, Mizobata T, Kawata Y. J Biol Chem; 2005 Nov 18; 280(46):38609-16. PubMed ID: 16162499 [Abstract] [Full Text] [Related]
6. Inhibition of transthyretin amyloid fibril formation by 2,4-dinitrophenol through tetramer stabilization. Raghu P, Reddy GB, Sivakumar B. Arch Biochem Biophys; 2002 Apr 01; 400(1):43-7. PubMed ID: 11913969 [Abstract] [Full Text] [Related]
7. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Lee AS, Galea C, DiGiammarino EL, Jun B, Murti G, Ribeiro RC, Zambetti G, Schultz CP, Kriwacki RW. J Mol Biol; 2003 Mar 28; 327(3):699-709. PubMed ID: 12634062 [Abstract] [Full Text] [Related]
8. Lysophospholipids induce the nucleation and extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. Ookoshi T, Hasegawa K, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y, Naiki H. Nephrol Dial Transplant; 2008 Oct 28; 23(10):3247-55. PubMed ID: 18467373 [Abstract] [Full Text] [Related]
9. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Gupta P, Aggarwal N, Batra P, Mishra S, Chaudhuri TK. Int J Biochem Cell Biol; 2006 Oct 28; 38(11):1975-85. PubMed ID: 16822698 [Abstract] [Full Text] [Related]
10. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant. Guidry JJ, Moczygemba CK, Steede NK, Landry SJ, Wittung-Stafshede P. Protein Sci; 2000 Nov 28; 9(11):2109-17. PubMed ID: 11152122 [Abstract] [Full Text] [Related]
11. Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. Yang F, Zhang M, Zhou BR, Chen J, Liang Y. J Mol Biol; 2006 Sep 29; 362(4):821-34. PubMed ID: 16935298 [Abstract] [Full Text] [Related]
12. The structural stability of the co-chaperonin GroES. Boudker O, Todd MJ, Freire E. J Mol Biol; 1997 Oct 10; 272(5):770-9. PubMed ID: 9368656 [Abstract] [Full Text] [Related]
13. Role of the C-terminal 28 residues of beta2-microglobulin in amyloid fibril formation. Ivanova MI, Gingery M, Whitson LJ, Eisenberg D. Biochemistry; 2003 Nov 25; 42(46):13536-40. PubMed ID: 14622000 [Abstract] [Full Text] [Related]
14. Mechanism of fibril formation by a 39-residue peptide (PAPf39) from human prostatic acidic phosphatase. Ye Z, French KC, Popova LA, Lednev IK, Lopez MM, Makhatadze GI. Biochemistry; 2009 Dec 08; 48(48):11582-91. PubMed ID: 19902966 [Abstract] [Full Text] [Related]
15. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. Morozova-Roche LA, Zurdo J, Spencer A, Noppe W, Receveur V, Archer DB, Joniau M, Dobson CM. J Struct Biol; 2000 Jun 08; 130(2-3):339-51. PubMed ID: 10940237 [Abstract] [Full Text] [Related]
16. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. Kumar S, Mohanty SK, Udgaonkar JB. J Mol Biol; 2007 Apr 06; 367(4):1186-204. PubMed ID: 17292913 [Abstract] [Full Text] [Related]
17. Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure. Sakane I, Hongo K, Motojima F, Murayama S, Mizobata T, Kawata Y. J Mol Biol; 2007 Apr 06; 367(4):1171-85. PubMed ID: 17303164 [Abstract] [Full Text] [Related]
18. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein. Thorn DC, Ecroyd H, Sunde M, Poon S, Carver JA. Biochemistry; 2008 Mar 25; 47(12):3926-36. PubMed ID: 18302322 [Abstract] [Full Text] [Related]
19. Disulfide formation as a probe of folding in GroEL-GroES reveals correct formation of long-range bonds and editing of incorrect short-range ones. Park ES, Fenton WA, Horwich AL. Proc Natl Acad Sci U S A; 2007 Feb 13; 104(7):2145-50. PubMed ID: 17283341 [Abstract] [Full Text] [Related]
20. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Mishra R, Sörgjerd K, Nyström S, Nordigården A, Yu YC, Hammarström P. J Mol Biol; 2007 Feb 23; 366(3):1029-44. PubMed ID: 17196616 [Abstract] [Full Text] [Related] Page: [Next] [New Search]