These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
427 related items for PubMed ID: 16054685
1. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture. Williamson MR, Adams EF, Coombes AG. Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685 [Abstract] [Full Text] [Related]
2. Gravity spinning of polycaprolactone fibres for applications in tissue engineering. Williamson MR, Coombes AG. Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694 [Abstract] [Full Text] [Related]
3. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films. Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF. Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520 [Abstract] [Full Text] [Related]
4. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro. Mei N, Chen G, Zhou P, Chen X, Shao ZZ, Pan LF, Wu CG. J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428 [Abstract] [Full Text] [Related]
5. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells. Williamson MR, Woollard KJ, Griffiths HR, Coombes AG. Tissue Eng; 2006 Jan; 12(1):45-51. PubMed ID: 16499441 [Abstract] [Full Text] [Related]
7. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335 [Abstract] [Full Text] [Related]
8. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone). Williamson MR, Chang HI, Coombes AG. Biomaterials; 2004 Sep; 25(20):5053-60. PubMed ID: 15109868 [Abstract] [Full Text] [Related]
9. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Sarasam A, Madihally SV. Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206 [Abstract] [Full Text] [Related]
10. Biocompatibility of sorbitol-containing polyesters. Part I: Synthesis, surface analysis and cell response in vitro. Mei Y, Kumar A, Gao W, Gross R, Kennedy SB, Washburn NR, Amis EJ, Elliott JT. Biomaterials; 2004 Aug; 25(18):4195-201. PubMed ID: 15046909 [Abstract] [Full Text] [Related]
11. Comparison of cellular proliferation on dense and porous PCL scaffolds. Saşmazel HT, Gümüşderelioğlu M, Gürpinar A, Onur MA. Biomed Mater Eng; 2008 Aug; 18(3):119-28. PubMed ID: 18725692 [Abstract] [Full Text] [Related]
12. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S. Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270 [Abstract] [Full Text] [Related]
13. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG. Biomaterials; 2004 Aug; 25(18):4263-71. PubMed ID: 15046916 [Abstract] [Full Text] [Related]
17. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC. Biomaterials; 2004 Jul 01; 25(16):3223-32. PubMed ID: 14980417 [Abstract] [Full Text] [Related]