These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


426 related items for PubMed ID: 16061305

  • 1. Linking a one-dimensional pesticide fate model to a three-dimensional groundwater model to simulate pollution risks of shallow and deep groundwater underlying fractured till.
    Stenemo F, Jørgensen PR, Jarvis N.
    J Contam Hydrol; 2005 Sep; 79(1-2):89-106. PubMed ID: 16061305
    [Abstract] [Full Text] [Related]

  • 2. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F, Lindahl AM, Gärdenäs A, Jarvis N.
    J Contam Hydrol; 2007 Aug 15; 93(1-4):270-83. PubMed ID: 17531347
    [Abstract] [Full Text] [Related]

  • 3. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales.
    Holman IP, Dubus IG, Hollis JM, Brown CD.
    Sci Total Environ; 2004 Jan 05; 318(1-3):73-88. PubMed ID: 14654276
    [Abstract] [Full Text] [Related]

  • 4. Aquifer vulnerability to pesticide migration through till aquitards.
    Jørgensen PR, McKay LD, Kistrup JP.
    Ground Water; 2004 Jan 05; 42(6-7):841-55. PubMed ID: 15584298
    [Abstract] [Full Text] [Related]

  • 5. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy.
    Garratt JA, Capri E, Trevisan M, Errera G, Wilkins RM.
    Pest Manag Sci; 2003 Jan 05; 59(1):3-20. PubMed ID: 12558095
    [Abstract] [Full Text] [Related]

  • 6. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL, Cherry JA, Chapman SW.
    J Contam Hydrol; 2004 Oct 05; 74(1-4):197-230. PubMed ID: 15358493
    [Abstract] [Full Text] [Related]

  • 7. Controls on atrazine leaching through a soil-unsaturated fractured limestone sequence at Brévilles, France.
    Roulier S, Baran N, Mouvet C, Stenemo F, Morvan X, Albrechtsen HJ, Clausen L, Jarvis N.
    J Contam Hydrol; 2006 Mar 01; 84(1-2):81-105. PubMed ID: 16448718
    [Abstract] [Full Text] [Related]

  • 8. Influence of input uncertainty on prediction of within-field pesticide leaching risks.
    Lindahl AM, Söderström M, Jarvis N.
    J Contam Hydrol; 2008 Jun 06; 98(3-4):106-14. PubMed ID: 18495293
    [Abstract] [Full Text] [Related]

  • 9. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.
    Vanderborght J, Tiktak A, Boesten JJ, Vereecken H.
    Pest Manag Sci; 2011 Mar 06; 67(3):294-306. PubMed ID: 21308955
    [Abstract] [Full Text] [Related]

  • 10. Testing MACRO (version 5.1) for pesticide leaching in a Dutch clay soil.
    Scorza Júnior RP, Jarvis NJ, Boesten JJ, van der Zee SE, Roulier S.
    Pest Manag Sci; 2007 Oct 06; 63(10):1011-25. PubMed ID: 17708522
    [Abstract] [Full Text] [Related]

  • 11. Simulation of pesticide leaching in a cracking clay soil with the PEARL model.
    Scorza Júnior RP, Boesten JJ.
    Pest Manag Sci; 2005 May 06; 61(5):432-48. PubMed ID: 15643643
    [Abstract] [Full Text] [Related]

  • 12. Accounting for uncertainty in pedotransfer functions in vulnerability assessments of pesticide leaching to groundwater.
    Stenemo F, Jarvis N.
    Pest Manag Sci; 2007 Sep 06; 63(9):867-75. PubMed ID: 17583910
    [Abstract] [Full Text] [Related]

  • 13. Application of artificial neural networks to assess pesticide contamination in shallow groundwater.
    Sahoo GB, Ray C, Mehnert E, Keefer DA.
    Sci Total Environ; 2006 Aug 15; 367(1):234-51. PubMed ID: 16460784
    [Abstract] [Full Text] [Related]

  • 14. Modeling of flow and contaminant transport in coupled stream-aquifer systems.
    Hussein M, Schwartz FW.
    J Contam Hydrol; 2003 Aug 15; 65(1-2):41-64. PubMed ID: 12855200
    [Abstract] [Full Text] [Related]

  • 15. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A, Hudak PF.
    Environ Int; 2003 Apr 15; 29(1):87-93. PubMed ID: 12605941
    [Abstract] [Full Text] [Related]

  • 16. An integrated approach for assessing influence of agricultural activities on pesticides in a shallow aquifer in south-eastern Norway.
    Kværner J, Eklo OM, Solbakken E, Solberg I, Sorknes S.
    Sci Total Environ; 2014 Nov 15; 499():520-32. PubMed ID: 24996854
    [Abstract] [Full Text] [Related]

  • 17. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations.
    Fretwell BA, Burgess WG, Barker JA, Jefferies NL.
    J Contam Hydrol; 2005 Jun 15; 78(1-2):27-52. PubMed ID: 15949606
    [Abstract] [Full Text] [Related]

  • 18. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A, Ripa MN, Uricchio V, Deák J, Vargay Z.
    J Environ Manage; 2009 Jul 15; 90(10):2969-78. PubMed ID: 18054423
    [Abstract] [Full Text] [Related]

  • 19. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching.
    Whelan MJ, Davenport EJ, Smith BG.
    Sci Total Environ; 2007 May 15; 377(2-3):192-206. PubMed ID: 17391735
    [Abstract] [Full Text] [Related]

  • 20. Mapping ground water vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL.
    Tiktak A, Boesten JJ, van der Linden AM, Vanclooster M.
    J Environ Qual; 2006 May 15; 35(4):1213-26. PubMed ID: 16825441
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.