These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inhibition of hsp90 compromises the DNA damage response to radiation. Dote H, Burgan WE, Camphausen K, Tofilon PJ. Cancer Res; 2006 Sep 15; 66(18):9211-20. PubMed ID: 16982765 [Abstract] [Full Text] [Related]
3. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Smith V, Sausville EA, Camalier RF, Fiebig HH, Burger AM. Cancer Chemother Pharmacol; 2005 Aug 15; 56(2):126-37. PubMed ID: 15841378 [Abstract] [Full Text] [Related]
4. Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Bull EE, Dote H, Brady KJ, Burgan WE, Carter DJ, Cerra MA, Oswald KA, Hollingshead MG, Camphausen K, Tofilon PJ. Clin Cancer Res; 2004 Dec 01; 10(23):8077-84. PubMed ID: 15585643 [Abstract] [Full Text] [Related]
5. Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 inhibitor 17-allylamino-17- demethoxygeldanamycin: a multitarget approach to radiosensitization. Russell JS, Burgan W, Oswald KA, Camphausen K, Tofilon PJ. Clin Cancer Res; 2003 Sep 01; 9(10 Pt 1):3749-55. PubMed ID: 14506167 [Abstract] [Full Text] [Related]
6. Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation. Machida H, Matsumoto Y, Shirai M, Kubota N. Int J Radiat Biol; 2003 Dec 01; 79(12):973-80. PubMed ID: 14713575 [Abstract] [Full Text] [Related]
7. Inhibition of Hsp90: a multitarget approach to radiosensitization. Camphausen K, Tofilon PJ. Clin Cancer Res; 2007 Aug 01; 13(15 Pt 1):4326-30. PubMed ID: 17671112 [Abstract] [Full Text] [Related]
8. The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells. Xu W, Yuan X, Jung YJ, Yang Y, Basso A, Rosen N, Chung EJ, Trepel J, Neckers L. Cancer Res; 2003 Nov 15; 63(22):7777-84. PubMed ID: 14633703 [Abstract] [Full Text] [Related]
9. Expression of epidermal growth factor receptor or ErbB3 facilitates geldanamycin-induced down-regulation of ErbB2. Pedersen NM, Breen K, Rødland MS, Haslekås C, Stang E, Madshus IH. Mol Cancer Res; 2009 Feb 15; 7(2):275-84. PubMed ID: 19208749 [Abstract] [Full Text] [Related]
10. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Eiseman JL, Lan J, Lagattuta TF, Hamburger DR, Joseph E, Covey JM, Egorin MJ. Cancer Chemother Pharmacol; 2005 Jan 15; 55(1):21-32. PubMed ID: 15338192 [Abstract] [Full Text] [Related]
11. Radiosensitization of human vascular endothelial cells through Hsp90 inhibition with 17-N-allilamino-17-demethoxygeldanamycin. Kabakov AE, Makarova YM, Malyutina YV. Int J Radiat Oncol Biol Phys; 2008 Jul 01; 71(3):858-65. PubMed ID: 18410996 [Abstract] [Full Text] [Related]
12. Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A, Vannini I, Silvestrini R, Zoli W. J Cell Physiol; 2009 Jul 01; 220(1):214-21. PubMed ID: 19288493 [Abstract] [Full Text] [Related]
13. Growth stimulation of non-small cell lung cancer cell lines by antibody against epidermal growth factor receptor promoting formation of ErbB2/ErbB3 heterodimers. Maegawa M, Takeuchi K, Funakoshi E, Kawasaki K, Nishio K, Shimizu N, Ito F. Mol Cancer Res; 2007 Apr 01; 5(4):393-401. PubMed ID: 17426253 [Abstract] [Full Text] [Related]
14. An activated JAK/STAT3 pathway and CD45 expression are associated with sensitivity to Hsp90 inhibitors in multiple myeloma. Lin H, Kolosenko I, Björklund AC, Protsyuk D, Österborg A, Grandér D, Tamm KP. Exp Cell Res; 2013 Mar 10; 319(5):600-11. PubMed ID: 23246572 [Abstract] [Full Text] [Related]
15. Combination of rapamycin and 17-allylamino-17-demethoxygeldanamycin abrogates Akt activation and potentiates mTOR blockade in breast cancer cells. Roforth MM, Tan C. Anticancer Drugs; 2008 Aug 10; 19(7):681-8. PubMed ID: 18594209 [Abstract] [Full Text] [Related]
16. Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Schwock J, Pham NA, Cao MP, Hedley DW. Cancer Chemother Pharmacol; 2008 Apr 10; 61(4):669-81. PubMed ID: 17579866 [Abstract] [Full Text] [Related]
17. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Asp N, Pust S, Sandvig K. Biochim Biophys Acta; 2014 Sep 10; 1843(9):1987-96. PubMed ID: 24747692 [Abstract] [Full Text] [Related]
18. Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Sithanandam G, Fornwald LW, Fields J, Anderson LM. Oncogene; 2005 Mar 10; 24(11):1847-59. PubMed ID: 15688028 [Abstract] [Full Text] [Related]
19. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FA, Giaccone G. Mol Pharmacol; 2005 Aug 10; 68(2):502-10. PubMed ID: 15908515 [Abstract] [Full Text] [Related]
20. HDAC inhibitor SNDX-275 induces apoptosis in erbB2-overexpressing breast cancer cells via down-regulation of erbB3 expression. Huang X, Gao L, Wang S, Lee CK, Ordentlich P, Liu B. Cancer Res; 2009 Nov 01; 69(21):8403-11. PubMed ID: 19826038 [Abstract] [Full Text] [Related] Page: [Next] [New Search]