These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 16075070

  • 1. Superparamagnetic gadonanotubes are high-performance MRI contrast agents.
    Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ.
    Chem Commun (Camb); 2005 Aug 21; (31):3915-7. PubMed ID: 16075070
    [Abstract] [Full Text] [Related]

  • 2. Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites.
    Sitharaman B, Van Der Zande M, Ananta JS, Shi X, Veltien A, Walboomers XF, Wilson LJ, Mikos AG, Heerschap A, Jansen JA.
    J Biomed Mater Res A; 2010 Jun 15; 93(4):1454-62. PubMed ID: 19927368
    [Abstract] [Full Text] [Related]

  • 3. Nanotechnology and MRI contrast enhancement.
    Matson ML, Wilson LJ.
    Future Med Chem; 2010 Mar 15; 2(3):491-502. PubMed ID: 21426177
    [Abstract] [Full Text] [Related]

  • 4. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.
    Law JJ, Guven A, Wilson LJ.
    Contrast Media Mol Imaging; 2014 Mar 15; 9(6):409-12. PubMed ID: 24764189
    [Abstract] [Full Text] [Related]

  • 5. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C.
    Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ.
    Invest Radiol; 2008 Dec 15; 43(12):817-28. PubMed ID: 19002053
    [Abstract] [Full Text] [Related]

  • 6. Subcellular Partitioning and Analysis of Gd3+-Loaded Ultrashort Single-Walled Carbon Nanotubes.
    Holt BD, Law JJ, Boyer PD, Wilson LJ, Dahl KN, Islam MF.
    ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14593-602. PubMed ID: 26098461
    [Abstract] [Full Text] [Related]

  • 7. Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons.
    Gizzatov A, Keshishian V, Guven A, Dimiev AM, Qu F, Muthupillai R, Decuzzi P, Bryant RG, Tour JM, Wilson LJ.
    Nanoscale; 2014 Mar 21; 6(6):3059-63. PubMed ID: 24504060
    [Abstract] [Full Text] [Related]

  • 8. Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging.
    Das GK, Heng BC, Ng SC, White T, Loo JS, D'Silva L, Padmanabhan P, Bhakoo KK, Selvan ST, Tan TT.
    Langmuir; 2010 Jun 01; 26(11):8959-65. PubMed ID: 20148548
    [Abstract] [Full Text] [Related]

  • 9. Contrast agents: magnetic resonance.
    Burtea C, Laurent S, Vander Elst L, Muller RN.
    Handb Exp Pharmacol; 2008 Jun 01; (185 Pt 1):135-65. PubMed ID: 18626802
    [Abstract] [Full Text] [Related]

  • 10. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging.
    Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Toth E, Merbach AE, Wilson LJ.
    Nano Lett; 2008 Feb 01; 8(2):415-9. PubMed ID: 18215084
    [Abstract] [Full Text] [Related]

  • 11. Gadonanotubes as new high-performance MRI contrast agents.
    Sitharaman B, Wilson LJ.
    Int J Nanomedicine; 2006 Feb 01; 1(3):291-5. PubMed ID: 17717970
    [Abstract] [Full Text] [Related]

  • 12. A Gd3+-based magnetic resonance imaging contrast agent sensitive to beta-galactosidase activity utilizing a receptor-induced magnetization enhancement (RIME) phenomenon.
    Hanaoka K, Kikuchi K, Terai T, Komatsu T, Nagano T.
    Chemistry; 2008 Feb 01; 14(3):987-95. PubMed ID: 17992679
    [Abstract] [Full Text] [Related]

  • 13. Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity.
    Csajbók E, Bányai I, Vander Elst L, Muller RN, Zhou W, Peters JA.
    Chemistry; 2005 Aug 05; 11(16):4799-807. PubMed ID: 15929138
    [Abstract] [Full Text] [Related]

  • 14. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents.
    Caravan P.
    Chem Soc Rev; 2006 Jun 05; 35(6):512-23. PubMed ID: 16729145
    [Abstract] [Full Text] [Related]

  • 15. Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential.
    Mohs AM, Lu ZR.
    Expert Opin Drug Deliv; 2007 Mar 05; 4(2):149-64. PubMed ID: 17335412
    [Abstract] [Full Text] [Related]

  • 16. Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd co-doped LaF3 as a multimodal imaging probe.
    Chen B, Zhang H, Du N, Zhang B, Wu Y, Shi D, Yang D.
    J Colloid Interface Sci; 2012 Feb 01; 367(1):61-6. PubMed ID: 22005345
    [Abstract] [Full Text] [Related]

  • 17. A paramagnetic contrast agent with myeloperoxidase-sensing properties.
    Querol M, Chen JW, Bogdanov AA.
    Org Biomol Chem; 2006 May 21; 4(10):1887-95. PubMed ID: 16688334
    [Abstract] [Full Text] [Related]

  • 18. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy pH responsive contrast agents.
    Pérez-Mayoral E, Negri V, Soler-Padrós J, Cerdán S, Ballesteros P.
    Eur J Radiol; 2008 Sep 21; 67(3):453-8. PubMed ID: 18455343
    [Abstract] [Full Text] [Related]

  • 19. Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes as MRI contrast agents.
    Tang AM, Ananta JS, Zhao H, Cisneros BT, Lam EY, Wong ST, Wilson LJ, Wong KK.
    Contrast Media Mol Imaging; 2011 Sep 21; 6(2):93-9. PubMed ID: 21504063
    [Abstract] [Full Text] [Related]

  • 20. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging.
    Werner EJ, Datta A, Jocher CJ, Raymond KN.
    Angew Chem Int Ed Engl; 2008 Sep 21; 47(45):8568-80. PubMed ID: 18825758
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.