These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


90 related items for PubMed ID: 16078081

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
    Okumura M, Matthews RJ, Robb B, Litman GW, Bork P, Thomas ML.
    J Immunol; 1996 Aug 15; 157(4):1569-75. PubMed ID: 8759740
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Molecular cloning, expression pattern, and phylogenetic analysis of a tetraspanin CD82-like molecule in lamprey Lampetra japonica.
    Zhang X, Song X, Su P, Gou M, Wang H, Liu X, Li Q.
    Dev Genes Evol; 2016 Mar 15; 226(2):87-98. PubMed ID: 26935717
    [Abstract] [Full Text] [Related]

  • 5. Altered CD45 expression and disease.
    Tchilian EZ, Beverley PC.
    Trends Immunol; 2006 Mar 15; 27(3):146-53. PubMed ID: 16423560
    [Abstract] [Full Text] [Related]

  • 6. T cell development in mice expressing splice variants of the protein tyrosine phosphatase CD45.
    Kozieradzki I, Kündig T, Kishihara K, Ong CJ, Chiu D, Wallace VA, Kawai K, Timms E, Ionescu J, Ohashi P, Marth JD, Mak TW, Penninger JM.
    J Immunol; 1997 Apr 01; 158(7):3130-9. PubMed ID: 9120266
    [Abstract] [Full Text] [Related]

  • 7. Organization and expression of thirteen alternatively spliced exons in catfish CD45 homologs.
    Kountikov E, Wilson M, Miller N, Clem W, Bengtén E.
    Dev Comp Immunol; 2004 Aug 01; 28(10):1023-35. PubMed ID: 15236932
    [Abstract] [Full Text] [Related]

  • 8. A point mutation in the human CD45 gene associated with defective splicing of exon A.
    Thude H, Hundrieser J, Wonigeit K, Schwinzer R.
    Eur J Immunol; 1995 Jul 01; 25(7):2101-6. PubMed ID: 7621884
    [Abstract] [Full Text] [Related]

  • 9. CD45 variant alleles: possibly increased frequency of a novel exon 4 CD45 polymorphism in HIV seropositive Ugandans.
    Stanton T, Boxall S, Bennett A, Kaleebu P, Watera C, Whitworth J, French N, Dawes R, Hill AV, Bodmer W, Beverley PC, Tchilian EZ.
    Immunogenetics; 2004 May 01; 56(2):107-10. PubMed ID: 15057492
    [Abstract] [Full Text] [Related]

  • 10. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates.
    Square T, Romášek M, Jandzik D, Cattell MV, Klymkowsky M, Medeiros DM.
    Development; 2015 Dec 01; 142(23):4180-7. PubMed ID: 26511928
    [Abstract] [Full Text] [Related]

  • 11. Variable domains in hagfish: NICIR is a polymorphic multigene family expressed preferentially in leukocytes and is related to lamprey TCR-like.
    Haruta C, Suzuki T, Kasahara M.
    Immunogenetics; 2006 Apr 01; 58(2-3):216-25. PubMed ID: 16541254
    [Abstract] [Full Text] [Related]

  • 12. Distinct splicing of CD45 mRNA in activated rat gamma delta cytotoxic T lymphocytes.
    Hansson J, Dohlsten M, Sjögren HO, Hedlund G.
    Eur J Immunol; 1995 Jan 01; 25(1):75-9. PubMed ID: 7843256
    [Abstract] [Full Text] [Related]

  • 13. Molecular cloning, tissue distribution, and developmental expression of lamprey transthyretins.
    Manzon RG, Neuls TM, Manzon LA.
    Gen Comp Endocrinol; 2007 Mar 01; 151(1):55-65. PubMed ID: 17223110
    [Abstract] [Full Text] [Related]

  • 14. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription.
    Katsu Y, Cziko PA, Chandsawangbhuwana C, Thornton JW, Sato R, Oka K, Takei Y, Baker ME, Iguchi T.
    Gen Comp Endocrinol; 2016 Sep 15; 236():105-114. PubMed ID: 27432813
    [Abstract] [Full Text] [Related]

  • 15. Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics.
    Kuratani S, Kuraku S, Murakami Y.
    Genesis; 2002 Nov 15; 34(3):175-83. PubMed ID: 12395382
    [Abstract] [Full Text] [Related]

  • 16. Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans.
    Montoya GE, Vernot JP, Patarroyo ME.
    Tissue Antigens; 2004 Aug 15; 64(2):165-72. PubMed ID: 15245371
    [Abstract] [Full Text] [Related]

  • 17. Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates.
    Filip LC, Mundy NI.
    Mol Biol Evol; 2004 Aug 15; 21(8):1504-11. PubMed ID: 15014144
    [Abstract] [Full Text] [Related]

  • 18. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans.
    Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, Tan YS, Madhumalar A, Tay BH, Brenner S, Verma CS, Ghadessy FJ, Venkatesh B, Lane DP.
    Genes Dev; 2016 Feb 01; 30(3):281-92. PubMed ID: 26798135
    [Abstract] [Full Text] [Related]

  • 19. Patterns and consequences of vertebrate Emx gene duplications.
    Tank EM, Dekker RG, Beauchamp K, Wilson KA, Boehmke AE, Langeland JA.
    Evol Dev; 2009 Feb 01; 11(4):343-53. PubMed ID: 19601968
    [Abstract] [Full Text] [Related]

  • 20. A novel protein tyrosine kinase Tec identified in lamprey, Lampetra japonica.
    Li R, Su P, Liu C, Zhang Q, Zhu T, Pang Y, Liu X, Li Q.
    Acta Biochim Biophys Sin (Shanghai); 2015 Aug 01; 47(8):639-46. PubMed ID: 26079172
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.