These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 16084561

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments.
    Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH.
    Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824
    [Abstract] [Full Text] [Related]

  • 25. Lability, solubility and speciation of Cd, Pb and Zn in alluvial soils of the River Trent catchment UK.
    Izquierdo M, Tye AM, Chenery SR.
    Environ Sci Process Impacts; 2013 Oct; 15(10):1844-58. PubMed ID: 23989468
    [Abstract] [Full Text] [Related]

  • 26. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field.
    Antoniadis V, Robinson JS, Alloway BJ.
    Chemosphere; 2008 Mar; 71(4):759-64. PubMed ID: 18031788
    [Abstract] [Full Text] [Related]

  • 27. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.
    Song N, Wang F, Zhang C, Tang S, Guo J, Ju X, Smith DL.
    Int J Phytoremediation; 2013 Mar; 15(3):268-82. PubMed ID: 23488012
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Metal accumulation in wild plants surrounding mining wastes.
    González RC, González-Chávez MC.
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil.
    Smith BA, Egeler P, Gilberg D, Hendershot W, Stephenson GL.
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils.
    Grispen VM, Nelissen HJ, Verkleij JA.
    Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching.
    Udovic M, Lestan D.
    Chemosphere; 2009 Mar; 74(10):1367-73. PubMed ID: 19110294
    [Abstract] [Full Text] [Related]

  • 39. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M, Khanlari ZV.
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [Abstract] [Full Text] [Related]

  • 40. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S, Xu M, Ma Y, Yang J.
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.