These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
480 related items for PubMed ID: 16085828
1. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. O'Leary ND, O'Connor KE, Ward P, Goff M, Dobson AD. Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828 [Abstract] [Full Text] [Related]
2. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH, Mitsky TA, Steinbüchel A. Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [Abstract] [Full Text] [Related]
3. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Hoffmann N, Steinbüchel A, Rehm BH. Appl Microbiol Biotechnol; 2000 Nov; 54(5):665-70. PubMed ID: 11131392 [Abstract] [Full Text] [Related]
4. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. Hoffmann N, Steinbüchel A, Rehm BH. FEMS Microbiol Lett; 2000 Mar 15; 184(2):253-9. PubMed ID: 10713430 [Abstract] [Full Text] [Related]
5. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. Rehm BH, Krüger N, Steinbüchel A. J Biol Chem; 1998 Sep 11; 273(37):24044-51. PubMed ID: 9727022 [Abstract] [Full Text] [Related]
6. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3. O' Leary ND, O' Mahony MM, Dobson AD. BMC Microbiol; 2011 Oct 13; 11():229. PubMed ID: 21995721 [Abstract] [Full Text] [Related]
7. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Fiedler S, Steinbüchel A, Rehm BH. Arch Microbiol; 2002 Aug 13; 178(2):149-60. PubMed ID: 12115060 [Abstract] [Full Text] [Related]
8. Effect of heterologous expression of phaG [(R)-3-hydroxyacyl-ACP-CoA transferase] on polyhydroxyalkanoate accumulation from the aromatic hydrocarbon phenylacetic acid in Pseudomonas species. Tobin KM, O'Leary ND, Dobson AD, O'Connor KE. FEMS Microbiol Lett; 2007 Mar 13; 268(1):9-15. PubMed ID: 17241246 [Abstract] [Full Text] [Related]
9. β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Liu S, Narancic T, Tham JL, O'Connor KE. Appl Microbiol Biotechnol; 2023 Mar 13; 107(5-6):1863-1874. PubMed ID: 36763117 [Abstract] [Full Text] [Related]
10. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, Zhang Z, Yu X. Appl Environ Microbiol; 2018 Sep 15; 84(18):. PubMed ID: 30030226 [Abstract] [Full Text] [Related]
11. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Ward PG, de Roo G, O'Connor KE. Appl Environ Microbiol; 2005 Apr 15; 71(4):2046-52. PubMed ID: 15812037 [Abstract] [Full Text] [Related]
12. PhaG-mediated synthesis of Poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Fiedler S, Steinbüchel A, Rehm BH. Appl Environ Microbiol; 2000 May 15; 66(5):2117-24. PubMed ID: 10788390 [Abstract] [Full Text] [Related]
13. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. Hoffmann N, Rehm BH. FEMS Microbiol Lett; 2004 Aug 01; 237(1):1-7. PubMed ID: 15268931 [Abstract] [Full Text] [Related]
14. Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions. O'Leary ND, Duetz WA, Dobson AD, O'Connor KE. FEMS Microbiol Lett; 2002 Mar 05; 208(2):263-8. PubMed ID: 11959447 [Abstract] [Full Text] [Related]
15. Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Liu W, Chen GQ. Appl Microbiol Biotechnol; 2007 Oct 05; 76(5):1153-9. PubMed ID: 17668200 [Abstract] [Full Text] [Related]
16. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon. García B, Olivera ER, Miñambres B, Fernández-Valverde M, Cañedo LM, Prieto MA, García JL, Martínez M, Luengo JM. J Biol Chem; 1999 Oct 08; 274(41):29228-41. PubMed ID: 10506180 [Abstract] [Full Text] [Related]
17. Bioconversion of styrene to poly(hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12. Tan GY, Chen CL, Ge L, Li L, Tan SN, Wang JY. Microbes Environ; 2015 Oct 08; 30(1):76-85. PubMed ID: 25740622 [Abstract] [Full Text] [Related]
18. The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. de Eugenio LI, Galán B, Escapa IF, Maestro B, Sanz JM, García JL, Prieto MA. Environ Microbiol; 2010 Jun 08; 12(6):1591-603. PubMed ID: 20406286 [Abstract] [Full Text] [Related]
19. Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE. Microbiology (Reading); 2009 Oct 08; 155(Pt 10):3348-3361. PubMed ID: 19608612 [Abstract] [Full Text] [Related]
20. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids. Fu J, Sharma P, Spicer V, Krokhin OV, Zhang X, Fristensky B, Cicek N, Sparling R, Levin DB. PLoS One; 2015 Oct 08; 10(11):e0142322. PubMed ID: 26544181 [Abstract] [Full Text] [Related] Page: [Next] [New Search]