These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 16088219

  • 1. Biofilm-defective mutants of Bacillus subtilis.
    Chagneau C, Saier MH.
    J Mol Microbiol Biotechnol; 2004; 8(3):177-88. PubMed ID: 16088219
    [Abstract] [Full Text] [Related]

  • 2. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis.
    Faires N, Tobisch S, Bachem S, Martin-Verstraete I, Hecker M, Stülke J.
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):141-8. PubMed ID: 10941796
    [Abstract] [Full Text] [Related]

  • 3. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis.
    Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD, Zvi L, Uematsu K, Krulwich TA.
    Mol Microbiol; 2004 Aug; 53(4):1035-49. PubMed ID: 15306009
    [Abstract] [Full Text] [Related]

  • 4. Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis.
    Kimura T, Kobayashi K.
    J Bacteriol; 2020 Jun 25; 202(14):. PubMed ID: 32393519
    [Abstract] [Full Text] [Related]

  • 5. Characterization of Bacillus subtilis mutants with carbon source-independent glutamate biosynthesis.
    Commichau FM, Wacker I, Schleider J, Blencke HM, Reif I, Tripal P, Stülke J.
    J Mol Microbiol Biotechnol; 2007 Jun 25; 12(1-2):106-13. PubMed ID: 17183217
    [Abstract] [Full Text] [Related]

  • 6. A molecular clutch disables flagella in the Bacillus subtilis biofilm.
    Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB.
    Science; 2008 Jun 20; 320(5883):1636-8. PubMed ID: 18566286
    [Abstract] [Full Text] [Related]

  • 7. Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant.
    Ludwig H, Meinken C, Matin A, Stülke J.
    J Bacteriol; 2002 Sep 20; 184(18):5174-8. PubMed ID: 12193635
    [Abstract] [Full Text] [Related]

  • 8. The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA.
    Wacker I, Ludwig H, Reif I, Blencke HM, Detsch C, Stülke J.
    Microbiology (Reading); 2003 Oct 20; 149(Pt 10):3001-3009. PubMed ID: 14523131
    [Abstract] [Full Text] [Related]

  • 9. Characterization of the codY gene and its influence on biofilm formation in Bacillus cereus.
    Hsueh YH, Somers EB, Wong AC.
    Arch Microbiol; 2008 Jun 20; 189(6):557-68. PubMed ID: 18214442
    [Abstract] [Full Text] [Related]

  • 10. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V, Boël G, Deutscher J.
    J Mol Microbiol Biotechnol; 2001 Jul 20; 3(3):433-8. PubMed ID: 11361075
    [Abstract] [Full Text] [Related]

  • 11. A master regulator for biofilm formation by Bacillus subtilis.
    Kearns DB, Chu F, Branda SS, Kolter R, Losick R.
    Mol Microbiol; 2005 Feb 20; 55(3):739-49. PubMed ID: 15661000
    [Abstract] [Full Text] [Related]

  • 12. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays.
    Stanley NR, Britton RA, Grossman AD, Lazazzera BA.
    J Bacteriol; 2003 Mar 20; 185(6):1951-7. PubMed ID: 12618459
    [Abstract] [Full Text] [Related]

  • 13. Targets of the master regulator of biofilm formation in Bacillus subtilis.
    Chu F, Kearns DB, Branda SS, Kolter R, Losick R.
    Mol Microbiol; 2006 Feb 20; 59(4):1216-28. PubMed ID: 16430695
    [Abstract] [Full Text] [Related]

  • 14. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
    Toutain CM, Caizza NC, Zegans ME, O'Toole GA.
    Res Microbiol; 2007 Jun 20; 158(5):471-7. PubMed ID: 17533122
    [Abstract] [Full Text] [Related]

  • 15. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT, Buist G, Kok J, Kuipers OP.
    J Mol Microbiol Biotechnol; 2007 Jun 20; 12(1-2):82-95. PubMed ID: 17183215
    [Abstract] [Full Text] [Related]

  • 16. Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development.
    Hölscher T, Bartels B, Lin YC, Gallegos-Monterrosa R, Price-Whelan A, Kolter R, Dietrich LEP, Kovács ÁT.
    J Mol Biol; 2015 Nov 20; 427(23):3695-3708. PubMed ID: 26122431
    [Abstract] [Full Text] [Related]

  • 17. Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation.
    Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D.
    Appl Environ Microbiol; 2005 Jan 20; 71(1):39-45. PubMed ID: 15640167
    [Abstract] [Full Text] [Related]

  • 18. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species.
    Morikawa M.
    J Biosci Bioeng; 2006 Jan 20; 101(1):1-8. PubMed ID: 16503283
    [Abstract] [Full Text] [Related]

  • 19. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance.
    Ren D, Bedzyk LA, Setlow P, Thomas SM, Ye RW, Wood TK.
    Biotechnol Bioeng; 2004 May 05; 86(3):344-64. PubMed ID: 15083514
    [Abstract] [Full Text] [Related]

  • 20. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis.
    Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA.
    Mol Microbiol; 2004 May 05; 52(3):847-60. PubMed ID: 15101989
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.