These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 16091586
1. Catalytic residues and substrate specificity of recombinant human tripeptidyl peptidase I (CLN2). Oyama H, Fujisawa T, Suzuki T, Dunn BM, Wlodawer A, Oda K. J Biochem; 2005 Aug; 138(2):127-34. PubMed ID: 16091586 [Abstract] [Full Text] [Related]
2. Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis. Ezaki J, Takeda-Ezaki M, Oda K, Kominami E. Biochem Biophys Res Commun; 2000 Feb 24; 268(3):904-8. PubMed ID: 10679303 [Abstract] [Full Text] [Related]
3. Rat tripeptidyl peptidase I: molecular cloning, functional expression, tissue localization and enzymatic characterization. Du PG, Kato S, Li YH, Maeda T, Yamane T, Yamamoto S, Fujiwara M, Yamamoto Y, Nishi K, Ohkubo I. Biol Chem; 2001 Dec 24; 382(12):1715-25. PubMed ID: 11843185 [Abstract] [Full Text] [Related]
4. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis. Bernardini F, Warburton MJ. Biochem J; 2002 Sep 01; 366(Pt 2):521-9. PubMed ID: 12038963 [Abstract] [Full Text] [Related]
5. Ser475, Glu272, Asp276, Asp327, and Asp360 are involved in catalytic activity of human tripeptidyl-peptidase I. Walus M, Kida E, Wisniewski KE, Golabek AA. FEBS Lett; 2005 Feb 28; 579(6):1383-8. PubMed ID: 15733845 [Abstract] [Full Text] [Related]
6. Analysis of catalytic properties of tripeptidyl peptidase I (TTP-I), a serine carboxyl lysosomal protease, and its detection in tissue extracts using selective FRET peptide substrate. Kondo MY, Gouvea IE, Okamoto DN, Santos JA, Souccar C, Oda K, Juliano L, Juliano MA. Peptides; 2016 Feb 28; 76():80-6. PubMed ID: 26775801 [Abstract] [Full Text] [Related]
7. The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis. Kopan S, Sivasubramaniam U, Warburton MJ. Biochem Biophys Res Commun; 2004 Jun 18; 319(1):58-65. PubMed ID: 15158442 [Abstract] [Full Text] [Related]
8. Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics. Eklund S, Lindås AC, Hamnevik E, Widersten M, Tomkinson B. Biochim Biophys Acta; 2012 Apr 18; 1824(4):561-70. PubMed ID: 22266401 [Abstract] [Full Text] [Related]
9. Expression and analysis of CLN2 variants in CHO cells: Q100R represents a polymorphism, and G389E and R447H represent loss-of-function mutations. Lin L, Lobel P. Hum Mutat; 2001 Aug 18; 18(2):165. PubMed ID: 11462245 [Abstract] [Full Text] [Related]
10. Detection of tripeptidyl peptidase I activity in living cells by fluorogenic substrates. Steinfeld R, Fuhrmann JC, Gärtner J. J Histochem Cytochem; 2006 Sep 18; 54(9):991-6. PubMed ID: 16782851 [Abstract] [Full Text] [Related]
11. Mutations in classical late infantile neuronal ceroid lipofuscinosis disrupt transport of tripeptidyl-peptidase I to lysosomes. Steinfeld R, Steinke HB, Isbrandt D, Kohlschütter A, Gärtner J. Hum Mol Genet; 2004 Oct 15; 13(20):2483-91. PubMed ID: 15317752 [Abstract] [Full Text] [Related]
12. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase. Ezaki J, Takeda-Ezaki M, Kominami E. J Biochem; 2000 Sep 15; 128(3):509-16. PubMed ID: 10965052 [Abstract] [Full Text] [Related]
13. Tripeptidyl-peptidase I in health and disease. Golabek AA, Kida E. Biol Chem; 2006 Aug 15; 387(8):1091-9. PubMed ID: 16895480 [Abstract] [Full Text] [Related]
14. Characterization of the endopeptidase activity of tripeptidyl-peptidase II. Eklund S, Dogan J, Jemth P, Kalbacher H, Tomkinson B. Biochem Biophys Res Commun; 2012 Aug 03; 424(3):503-7. PubMed ID: 22771804 [Abstract] [Full Text] [Related]
15. AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL. Sondhi D, Peterson DA, Giannaris EL, Sanders CT, Mendez BS, De B, Rostkowski AB, Blanchard B, Bjugstad K, Sladek JR, Redmond DE, Leopold PL, Kaminsky SM, Hackett NR, Crystal RG. Gene Ther; 2005 Nov 03; 12(22):1618-32. PubMed ID: 16052206 [Abstract] [Full Text] [Related]
16. Determination of the substrate specificity of tripeptidyl-peptidase I using combinatorial peptide libraries and development of improved fluorogenic substrates. Tian Y, Sohar I, Taylor JW, Lobel P. J Biol Chem; 2006 Mar 10; 281(10):6559-72. PubMed ID: 16339154 [Abstract] [Full Text] [Related]
17. Mutation of the glycosylated asparagine residue 286 in human CLN2 protein results in loss of enzymatic activity. Tsiakas K, Steinfeld R, Storch S, Ezaki J, Lukacs Z, Kominami E, Kohlschütter A, Ullrich K, Braulke T. Glycobiology; 2004 Apr 10; 14(4):1C-5C. PubMed ID: 14736728 [Abstract] [Full Text] [Related]
18. Defining the substrate specificity of mouse cathepsin P. Puzer L, Barros NM, Oliveira V, Juliano MA, Lu G, Hassanein M, Juliano L, Mason RW, Carmona AK. Arch Biochem Biophys; 2005 Mar 01; 435(1):190-6. PubMed ID: 15680921 [Abstract] [Full Text] [Related]
19. Novel prolyl tri/tetra-peptidyl aminopeptidase from Streptomyces mobaraensis: substrate specificity and enzyme gene cloning. Umezawa Y, Yokoyama K, Kikuchi Y, Date M, Ito K, Yoshimoto T, Matsui H. J Biochem; 2004 Sep 01; 136(3):293-300. PubMed ID: 15598885 [Abstract] [Full Text] [Related]
20. Purification and characterization of tripeptidyl peptidase I from Dictyostelium discoideum. Krimper RP, Jones TH. Biochem Mol Biol Int; 1999 Jun 01; 47(6):1079-88. PubMed ID: 10410254 [Abstract] [Full Text] [Related] Page: [Next] [New Search]