These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


388 related items for PubMed ID: 16093331

  • 1. A role for hip position in initiating the swing-to-stance transition in walking cats.
    McVea DA, Donelan JM, Tachibana A, Pearson KG.
    J Neurophysiol; 2005 Nov; 94(5):3497-508. PubMed ID: 16093331
    [Abstract] [Full Text] [Related]

  • 2. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 3. Role of sensory feedback in the control of stance duration in walking cats.
    Pearson KG.
    Brain Res Rev; 2008 Jan; 57(1):222-7. PubMed ID: 17761295
    [Abstract] [Full Text] [Related]

  • 4. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV, Chen C, Smith JL.
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [Abstract] [Full Text] [Related]

  • 5. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O, Pearson K.
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [Abstract] [Full Text] [Related]

  • 6. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC, Goldberg SR, Pandy MG, Delp SL.
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [Abstract] [Full Text] [Related]

  • 7. A new approach to detecting asymmetries in gait.
    Shorter KA, Polk JD, Rosengren KS, Hsiao-Wecksler ET.
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [Abstract] [Full Text] [Related]

  • 8. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE.
    J Neurophysiol; 2006 Oct; 96(4):1816-28. PubMed ID: 16823027
    [Abstract] [Full Text] [Related]

  • 9. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA, Crossley KM, Kim HJ, Pandy MG.
    J Biomech; 2010 May 28; 43(8):1618-22. PubMed ID: 20176362
    [Abstract] [Full Text] [Related]

  • 10. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA, Buford JA, Smith JL.
    J Neurophysiol; 1996 Feb 28; 75(2):832-42. PubMed ID: 8714656
    [Abstract] [Full Text] [Related]

  • 11. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T, Lemaire ED, Kofman J.
    Clin Biomech (Bristol, Avon); 2006 Dec 28; 21(10):1081-9. PubMed ID: 16949186
    [Abstract] [Full Text] [Related]

  • 12. Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats.
    Lam T, Pearson KG.
    J Neurophysiol; 2001 Sep 28; 86(3):1321-32. PubMed ID: 11535680
    [Abstract] [Full Text] [Related]

  • 13. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J, Rudmann C, Brunner R.
    Clin Biomech (Bristol, Avon); 2006 Jan 28; 21(1):75-81. PubMed ID: 16169641
    [Abstract] [Full Text] [Related]

  • 14. Inter-segmental coordination: motor pattern in humans stepping over an obstacle with mechanical ankle joint friction.
    Gueguen N, Charbonneau M, Robert G, Coyle T, Prince F, Mouchnino L.
    J Biomech; 2005 Jul 28; 38(7):1491-500. PubMed ID: 15922760
    [Abstract] [Full Text] [Related]

  • 15. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N, Ekeberg O.
    Biol Cybern; 2008 Aug 28; 99(2):125-38. PubMed ID: 18648849
    [Abstract] [Full Text] [Related]

  • 16. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.
    Carlson-Kuhta P, Trank TV, Smith JL.
    J Neurophysiol; 1998 Apr 28; 79(4):1687-701. PubMed ID: 9535939
    [Abstract] [Full Text] [Related]

  • 17. Multi-functionality of the cat medical gastrocnemius during locomotion.
    Kaya M, Jinha A, Leonard TR, Herzog W.
    J Biomech; 2005 Jun 28; 38(6):1291-301. PubMed ID: 15863114
    [Abstract] [Full Text] [Related]

  • 18. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL, Hollands MA, Patla E.
    Exp Brain Res; 2002 Mar 28; 143(1):24-34. PubMed ID: 11907687
    [Abstract] [Full Text] [Related]

  • 19. Vibration-induced changes in EMG during human locomotion.
    Verschueren SM, Swinnen SP, Desloovere K, Duysens J.
    J Neurophysiol; 2003 Mar 28; 89(3):1299-307. PubMed ID: 12626612
    [Abstract] [Full Text] [Related]

  • 20. Adaptive control for backward quadrupedal walking. IV. Hindlimb kinetics during stance and swing.
    Perell KL, Gregor RJ, Buford JA, Smith JL.
    J Neurophysiol; 1993 Dec 28; 70(6):2226-40. PubMed ID: 8120579
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.