These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 16098779

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Calculation of absolute ligand binding free energy to a ribosome-targeting protein as a function of solvent model.
    Lee MS, Olson MA.
    J Phys Chem B; 2008 Oct 23; 112(42):13411-7. PubMed ID: 18821791
    [Abstract] [Full Text] [Related]

  • 5. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O, Weiser J, Shenkin P, Kolossváry I, Still WC.
    J Comput Chem; 2002 Jan 30; 23(2):214-21. PubMed ID: 11924735
    [Abstract] [Full Text] [Related]

  • 6. Postprocessing of docked protein-ligand complexes using implicit solvation models.
    Lindström A, Edvinsson L, Johansson A, Andersson CD, Andersson IE, Raubacher F, Linusson A.
    J Chem Inf Model; 2011 Feb 28; 51(2):267-82. PubMed ID: 21309544
    [Abstract] [Full Text] [Related]

  • 7. Combining docking, scoring and molecular field analyses to probe influenza neuraminidase-ligand interactions.
    Abu Hammad AM, Afifi FU, Taha MO.
    J Mol Graph Model; 2007 Sep 28; 26(2):443-56. PubMed ID: 17360207
    [Abstract] [Full Text] [Related]

  • 8. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K, Hannongbua S, Feig M.
    J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388
    [Abstract] [Full Text] [Related]

  • 9. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA.
    Proteins; 2004 Dec 01; 57(4):645-50. PubMed ID: 15481087
    [Abstract] [Full Text] [Related]

  • 10. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.
    Pearlman DA, Rao BG, Charifson P.
    Proteins; 2008 May 15; 71(3):1519-38. PubMed ID: 18300249
    [Abstract] [Full Text] [Related]

  • 11. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling.
    Gallicchio E, Levy RM.
    J Comput Chem; 2004 Mar 15; 25(4):479-99. PubMed ID: 14735568
    [Abstract] [Full Text] [Related]

  • 12. Molecular dynamics and free energy analysis of neuraminidase-ligand interactions.
    Bonnet P, Bryce RA.
    Protein Sci; 2004 Apr 15; 13(4):946-57. PubMed ID: 15044728
    [Abstract] [Full Text] [Related]

  • 13. Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations.
    Masukawa KM, Kollman PA, Kuntz ID.
    J Med Chem; 2003 Dec 18; 46(26):5628-37. PubMed ID: 14667217
    [Abstract] [Full Text] [Related]

  • 14. Continuum solvation models in the linear interaction energy method.
    Carlsson J, Andér M, Nervall M, Aqvist J.
    J Phys Chem B; 2006 Jun 22; 110(24):12034-41. PubMed ID: 16800513
    [Abstract] [Full Text] [Related]

  • 15. Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase.
    Venkatarangan P, Hopfinger AJ.
    J Med Chem; 1999 Jun 17; 42(12):2169-79. PubMed ID: 10377222
    [Abstract] [Full Text] [Related]

  • 16. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G.
    Bioorg Med Chem; 2007 Dec 15; 15(24):7865-77. PubMed ID: 17870536
    [Abstract] [Full Text] [Related]

  • 17. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations.
    Bartels C, Widmer A, Ehrhardt C.
    J Comput Chem; 2005 Sep 15; 26(12):1294-305. PubMed ID: 15981257
    [Abstract] [Full Text] [Related]

  • 18. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD, Sommer MS, Karplus M.
    J Mol Biol; 1995 Apr 07; 247(4):774-807. PubMed ID: 7723031
    [Abstract] [Full Text] [Related]

  • 19. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q, Yang J, Liang K, Feng L, Li S, Wan J, Xu X, Yang G, Liu D, Yang S.
    J Chem Inf Model; 2008 Sep 07; 48(9):1802-12. PubMed ID: 18707092
    [Abstract] [Full Text] [Related]

  • 20. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S, Ryde U.
    Proteins; 2012 May 07; 80(5):1326-42. PubMed ID: 22274991
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.