These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
430 related items for PubMed ID: 16099303
1. Neonatal depletion of cortical dopamine: effects on dopamine turnover and motor behavior in juvenile and adult rats. Boyce PJ, Finlay JM. Brain Res Dev Brain Res; 2005 May 12; 156(2):167-75. PubMed ID: 16099303 [Abstract] [Full Text] [Related]
2. Forebrain D1 function and sensorimotor gating in rats: effects of D1 blockade, frontal lesions and dopamine denervation. Swerdlow NR, Shoemaker JM, Kuczenski R, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL. Neurosci Lett; 2006 Jul 10; 402(1-2):40-5. PubMed ID: 16644125 [Abstract] [Full Text] [Related]
3. Long-term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by Caesarean section compared to vaginal birth. El-Khodor BF, Boksa P. Exp Neurol; 1997 May 10; 145(1):118-29. PubMed ID: 9184115 [Abstract] [Full Text] [Related]
4. Effects of 6-hydroxydopamine lesioning of the medial prefrontal cortex on social interactions in adolescent and adult rats. Li CR, Huang GB, Sui ZY, Han EH, Chung YC. Brain Res; 2010 Jul 30; 1346():183-9. PubMed ID: 20513371 [Abstract] [Full Text] [Related]
5. Extracellular dopamine and norepinephrine in the developing rat prefrontal cortex: transient effects of early partial loss of dopamine. Boyce PJ, Finlay JM. Brain Res Bull; 2009 Apr 29; 79(2):104-110. PubMed ID: 19320060 [Abstract] [Full Text] [Related]
6. Origin of extracellular dopamine from dopamine and noradrenaline neurons in the medial prefrontal and occipital cortex. Devoto P, Flore G, Longu G, Pira L, Gessa GL. Synapse; 2003 Dec 01; 50(3):200-5. PubMed ID: 14515337 [Abstract] [Full Text] [Related]
7. The medial prefrontal cortex determines the accumbens dopamine response to stress through the opposing influences of norepinephrine and dopamine. Pascucci T, Ventura R, Latagliata EC, Cabib S, Puglisi-Allegra S. Cereb Cortex; 2007 Dec 01; 17(12):2796-804. PubMed ID: 17322559 [Abstract] [Full Text] [Related]
8. Blockade of D-1 dopamine receptors in the medial prefrontal cortex produces delayed effects on pre- and postsynaptic indices of dopamine function in the nucleus accumbens. Vezina P, Blanc G, Glowinski J, Tassin JP. Synapse; 1994 Feb 01; 16(2):104-12. PubMed ID: 8197574 [Abstract] [Full Text] [Related]
9. [Effects of conditioned fear stress on monoaminergic systems in the rat brain]. Inoue T. Hokkaido Igaku Zasshi; 1993 May 01; 68(3):377-90. PubMed ID: 7686527 [Abstract] [Full Text] [Related]
10. Diminished serotonergic innervation of adult medial prefrontal cortex after 6-OHDA lesions in the newborn rat. Cunningham MG, Connor CM, Zhang K, Benes FM. Brain Res Dev Brain Res; 2005 Jun 30; 157(2):124-31. PubMed ID: 15885807 [Abstract] [Full Text] [Related]
11. Effects of repeated cocaine on the release and clearance of dopamine within the rat medial prefrontal cortex. Williams JM, Steketee JD. Synapse; 2005 Feb 30; 55(2):98-109. PubMed ID: 15529334 [Abstract] [Full Text] [Related]
12. Loss of dopamine terminals in the medial prefrontal cortex increased the ratio of DOPAC to DA in tissue of the nucleus accumbens shell: role of stress. King D, Finlay JM. Brain Res; 1997 Sep 05; 767(2):192-200. PubMed ID: 9367247 [Abstract] [Full Text] [Related]
13. Desipramine attenuates working memory impairments induced by partial loss of catecholamines in the rat medial prefrontal cortex. Clinton SM, Sucharski IL, Finlay JM. Psychopharmacology (Berl); 2006 Jan 05; 183(4):404-12. PubMed ID: 16307295 [Abstract] [Full Text] [Related]
14. Neonatal medial prefrontal cortex lesion enhances the sensitivity of the mesoaccumbal dopamine system. Bennay M, Gernert M, Schwabe K, Enkel T, Koch M. Eur J Neurosci; 2004 Jun 05; 19(12):3277-90. PubMed ID: 15217384 [Abstract] [Full Text] [Related]
15. Impairment of dopaminergic system function after chronic treatment with corticotropin-releasing factor. Izzo E, Sanna PP, Koob GF. Pharmacol Biochem Behav; 2005 Aug 05; 81(4):701-8. PubMed ID: 16005056 [Abstract] [Full Text] [Related]
16. Isolation rearing-induced reduction of brain 5α-reductase expression: relevance to dopaminergic impairments. Bortolato M, Devoto P, Roncada P, Frau R, Flore G, Saba P, Pistritto G, Soggiu A, Pisanu S, Zappala A, Ristaldi MS, Tattoli M, Cuomo V, Marrosu F, Barbaccia ML. Neuropharmacology; 2011 Jun 05; 60(7-8):1301-8. PubMed ID: 21256141 [Abstract] [Full Text] [Related]
17. In vivo evidence that constitutive activity of serotonin2C receptors in the medial prefrontal cortex participates in the control of dopamine release in the rat nucleus accumbens: differential effects of inverse agonist versus antagonist. Leggio GM, Cathala A, Neny M, Rouge-Pont F, Drago F, Piazza PV, Spampinato U. J Neurochem; 2009 Oct 05; 111(2):614-23. PubMed ID: 19702657 [Abstract] [Full Text] [Related]
18. Effects of selective dopamine depletion in medial prefrontal cortex on basal and evoked extracellular dopamine in neostriatum. King D, Finlay JM. Brain Res; 1995 Jul 10; 685(1-2):117-28. PubMed ID: 7583236 [Abstract] [Full Text] [Related]
19. Nicotine and morphine differentially activate brain dopamine in prefrontocortical and subcortical terminal fields: effects of acute and repeated injections. Vezina P, Blanc G, Glowinski J, Tassin JP. J Pharmacol Exp Ther; 1992 May 10; 261(2):484-90. PubMed ID: 1578364 [Abstract] [Full Text] [Related]
20. Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Berridge CW, Mitton E, Clark W, Roth RH. Synapse; 1999 Jun 01; 32(3):187-97. PubMed ID: 10340629 [Abstract] [Full Text] [Related] Page: [Next] [New Search]