These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata). Panagou EZ, Tassou CC, Manitsa C, Mallidis C. J Appl Microbiol; 2007 Jun; 102(6):1499-507. PubMed ID: 17578414 [Abstract] [Full Text] [Related]
6. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium. Tassou CC, Panagou EZ, Samaras FJ, Galiatsatou P, Mallidis CG. J Appl Microbiol; 2008 Jun; 104(6):1764-73. PubMed ID: 18298540 [Abstract] [Full Text] [Related]
7. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk. Koseki S, Mizuno Y, Yamamoto K. Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771 [Abstract] [Full Text] [Related]
8. Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. Chen H, Hoover DG. Int J Food Microbiol; 2003 Oct 15; 87(1-2):161-71. PubMed ID: 12927719 [Abstract] [Full Text] [Related]
9. A novel approach to predicting microbial inactivation kinetics during high pressure processing. Koseki S, Yamamoto K. Int J Food Microbiol; 2007 May 10; 116(2):275-82. PubMed ID: 17363099 [Abstract] [Full Text] [Related]
10. Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. Avsaroglu MD, Buzrul S, Alpas H, Akcelik M, Bozoglu F. Int J Food Microbiol; 2006 Apr 15; 108(1):78-83. PubMed ID: 16387378 [Abstract] [Full Text] [Related]
12. High hydrostatic pressure inactivation of Salmonella typhimurium: effects of pressure, duration, pH and temperature studied by analysis of variance. Ritz M, Courcoux P, Semenou M, Federighi M. Vet Res; 1998 Apr 15; 29(6):547-56. PubMed ID: 9851011 [Abstract] [Full Text] [Related]
13. Modeling the pressure inactivation of Escherichia coli and Salmonella typhimurium in sapote mamey ( Pouteria sapota (Jacq.) H.E. Moore & Stearn) pulp. Saucedo-Reyes D, Carrillo-Salazar JA, Román-Padilla L, Saucedo-Veloz C, Reyes-Santamaría MI, Ramírez-Gilly M, Tecante A. Food Sci Technol Int; 2018 Mar 15; 24(2):117-131. PubMed ID: 29050495 [Abstract] [Full Text] [Related]
14. Statistical analysis of inactivation of Listeria monocytogenes subjected to high hydrostatic pressure and heat in milk buffer. Gao YL, Ju XR, Jiang HH. Appl Microbiol Biotechnol; 2006 May 15; 70(6):670-8. PubMed ID: 16158281 [Abstract] [Full Text] [Related]
17. Influence of kinetic parameters of high pressure processing on bacterial inactivation in a buffer system. Chapleau N, Ritz M, Delépine S, Jugiau F, Federighi M, de Lamballerie M. Int J Food Microbiol; 2006 Feb 15; 106(3):324-30. PubMed ID: 16293331 [Abstract] [Full Text] [Related]
18. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide. Liao H, Hu X, Liao X, Chen F, Wu J. Int J Food Microbiol; 2007 Sep 15; 118(2):126-31. PubMed ID: 17689768 [Abstract] [Full Text] [Related]
20. Sensitivity of Staphylococcus aureus and Lactobacillus helveticus in ovine milk subjected to high hydrostatic pressure. Gervilla R, Sendra E, Ferragut V, Guamis B. J Dairy Sci; 1999 Jun 15; 82(6):1099-107. PubMed ID: 10386295 [Abstract] [Full Text] [Related] Page: [Next] [New Search]