These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
344 related items for PubMed ID: 16101287
1. Temperature-induced conformational change at the catalytic site of Sulfolobus solfataricus alcohol dehydrogenase highlighted by Asn249Tyr substitution. A hydrogen/deuterium exchange, kinetic, and fluorescence quenching study. Secundo F, Russo C, Giordano A, Carrea G, Rossi M, Raia CA. Biochemistry; 2005 Aug 23; 44(33):11040-8. PubMed ID: 16101287 [Abstract] [Full Text] [Related]
2. Asn249Tyr substitution at the coenzyme binding domain activates Sulfolobus solfataricus alcohol dehydrogenase and increases its thermal stability. Giordano A, Cannio R, La Cara F, Bartolucci S, Rossi M, Raia CA. Biochemistry; 1999 Mar 09; 38(10):3043-54. PubMed ID: 10074357 [Abstract] [Full Text] [Related]
4. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B. Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252 [Abstract] [Full Text] [Related]
5. Crystal structure of a ternary complex of the alcohol dehydrogenase from Sulfolobus solfataricus. Esposito L, Bruno I, Sica F, Raia CA, Giordano A, Rossi M, Mazzarella L, Zagari A. Biochemistry; 2003 Dec 16; 42(49):14397-407. PubMed ID: 14661950 [Abstract] [Full Text] [Related]
6. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase. Pennacchio A, Esposito L, Zagari A, Rossi M, Raia CA. Extremophiles; 2009 Sep 16; 13(5):751-61. PubMed ID: 19588068 [Abstract] [Full Text] [Related]
7. Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue. Liang ZX, Tsigos I, Lee T, Bouriotis V, Resing KA, Ahn NG, Klinman JP. Biochemistry; 2004 Nov 23; 43(46):14676-83. PubMed ID: 15544338 [Abstract] [Full Text] [Related]
8. Activation of Sulfolobus solfataricus alcohol dehydrogenase by modification of cysteine residue 38 with iodoacetic acid. Raia CA, Caruso C, Marino M, Vespa N, Rossi M. Biochemistry; 1996 Jan 16; 35(2):638-47. PubMed ID: 8555238 [Abstract] [Full Text] [Related]
9. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM, Grinstead JS, Campbell AP, Daggett V, Atkins WM. Biochemistry; 1999 Apr 20; 38(16):5065-75. PubMed ID: 10213609 [Abstract] [Full Text] [Related]
10. Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding. Ceccarelli C, Liang ZX, Strickler M, Prehna G, Goldstein BM, Klinman JP, Bahnson BJ. Biochemistry; 2004 May 11; 43(18):5266-77. PubMed ID: 15122892 [Abstract] [Full Text] [Related]
11. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Guagliardi A, Cerchia L, Bartolucci S, Rossi M. Protein Sci; 1994 Sep 11; 3(9):1436-43. PubMed ID: 7833806 [Abstract] [Full Text] [Related]
12. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Tang L, van Merode AE, Lutje Spelberg JH, Fraaije MW, Janssen DB. Biochemistry; 2003 Dec 02; 42(47):14057-65. PubMed ID: 14636074 [Abstract] [Full Text] [Related]
13. A single mutation at Tyr143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and affects the oxidation state of bound cofactor nicotinamide-adenine dinucleotide. Beluzić R, Cuk M, Pavkov T, Fumić K, Barić I, Mudd SH, Jurak I, Vugrek O. Biochem J; 2006 Dec 01; 400(2):245-53. PubMed ID: 16872278 [Abstract] [Full Text] [Related]
14. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. LeBrun LA, Park DH, Ramaswamy S, Plapp BV. Biochemistry; 2004 Mar 23; 43(11):3014-26. PubMed ID: 15023053 [Abstract] [Full Text] [Related]
15. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface. Strasser F, Dey J, Eftink MR, Plapp BV. Arch Biochem Biophys; 1998 Oct 15; 358(2):369-76. PubMed ID: 9784252 [Abstract] [Full Text] [Related]
16. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1. Chern MK, Wu TC, Hsieh CH, Chou CC, Liu LF, Kuan IC, Yeh YH, Hsiao CD, Tam MF. J Mol Biol; 2000 Jul 28; 300(5):1257-69. PubMed ID: 10903867 [Abstract] [Full Text] [Related]
17. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy. Lew J, Taylor SS, Adams JA. Biochemistry; 1997 Jun 03; 36(22):6717-24. PubMed ID: 9184152 [Abstract] [Full Text] [Related]
18. Probes of hydrogen tunneling with horse liver alcohol dehydrogenase at subzero temperatures. Tsai S, Klinman JP. Biochemistry; 2001 Feb 20; 40(7):2303-11. PubMed ID: 11329300 [Abstract] [Full Text] [Related]
19. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE, Liu D, Rao GS, Harris BG, Cook PF. Biochemistry; 2005 Mar 08; 44(9):3626-35. PubMed ID: 15736972 [Abstract] [Full Text] [Related]
20. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism. Lu Y, Qu F, Zhao Y, Small AM, Bradshaw J, Moore B. J Org Chem; 2009 Sep 04; 74(17):6503-10. PubMed ID: 19670893 [Abstract] [Full Text] [Related] Page: [Next] [New Search]