These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 16107145
21. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. Deng Z, Chuaqui C, Singh J. J Med Chem; 2004 Jan 15; 47(2):337-44. PubMed ID: 14711306 [Abstract] [Full Text] [Related]
22. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I, Sadiq SK, Coveney PV. J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901 [Abstract] [Full Text] [Related]
23. Structural parameterization of the binding enthalpy of small ligands. Luque I, Freire E. Proteins; 2002 Nov 01; 49(2):181-90. PubMed ID: 12210999 [Abstract] [Full Text] [Related]
24. Receptor flexibility in de novo ligand design and docking. Alberts IL, Todorov NP, Dean PM. J Med Chem; 2005 Oct 20; 48(21):6585-96. PubMed ID: 16220975 [Abstract] [Full Text] [Related]
25. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M. J Med Chem; 2004 Jan 01; 47(1):45-55. PubMed ID: 14695819 [Abstract] [Full Text] [Related]
26. Analysis of HIV wild-type and mutant structures via in silico docking against diverse ligand libraries. Chang MW, Lindstrom W, Olson AJ, Belew RK. J Chem Inf Model; 2007 Jan 01; 47(3):1258-62. PubMed ID: 17447753 [Abstract] [Full Text] [Related]
27. Maximum common binding modes (MCBM): consensus docking scoring using multiple ligand information and interaction fingerprints. Renner S, Derksen S, Radestock S, Mörchen F. J Chem Inf Model; 2008 Feb 01; 48(2):319-32. PubMed ID: 18211051 [Abstract] [Full Text] [Related]
28. GAsDock: a new approach for rapid flexible docking based on an improved multi-population genetic algorithm. Li H, Li C, Gui C, Luo X, Chen K, Shen J, Wang X, Jiang H. Bioorg Med Chem Lett; 2004 Sep 20; 14(18):4671-6. PubMed ID: 15324886 [Abstract] [Full Text] [Related]
30. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification. Islam MA, Pillay TS. J Mol Graph Model; 2015 Mar 20; 56():20-30. PubMed ID: 25541527 [Abstract] [Full Text] [Related]
31. Steering protein-ligand docking with quantitative NMR chemical shift perturbations. González-Ruiz D, Gohlke H. J Chem Inf Model; 2009 Oct 20; 49(10):2260-71. PubMed ID: 19795907 [Abstract] [Full Text] [Related]
32. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases. Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I, Coveney PV. J Chem Inf Model; 2008 Sep 20; 48(9):1909-19. PubMed ID: 18710212 [Abstract] [Full Text] [Related]
33. Development and evaluation of a generic evolutionary method for protein-ligand docking. Yang JM. J Comput Chem; 2004 Apr 30; 25(6):843-57. PubMed ID: 15011256 [Abstract] [Full Text] [Related]
34. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design. Perryman AL, Lin JH, Andrew McCammon J. Chem Biol Drug Des; 2006 May 30; 67(5):336-45. PubMed ID: 16784458 [Abstract] [Full Text] [Related]