These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 16111132

  • 1. Predicting extents of mercury oxidation in coal-derived flue gases.
    Niksa S, Fujiwara N.
    J Air Waste Manag Assoc; 2005 Jul; 55(7):930-9. PubMed ID: 16111132
    [Abstract] [Full Text] [Related]

  • 2. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas.
    Niksa S, Fujiwara N.
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1866-75. PubMed ID: 16408691
    [Abstract] [Full Text] [Related]

  • 3. A mechanism for mercury oxidation in coat-derived exhausts.
    Niksa S, Fujiwara N, Fujita Y, Tomura K, Moritomi H, Tuji T, Takasu S.
    J Air Waste Manag Assoc; 2002 Aug; 52(8):894-901. PubMed ID: 12184687
    [Abstract] [Full Text] [Related]

  • 4. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C, Machalek T, Miller S, Dene C, Chang R.
    J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693
    [Abstract] [Full Text] [Related]

  • 5. Active methods of mercury removal from flue gases.
    Marczak M, Budzyń S, Szczurowski J, Kogut K, Burmistrz P.
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [Abstract] [Full Text] [Related]

  • 6. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K, Hartman M, Šyc M, Pohořelý M, Kameníková P, Jeremiáš M, Durda T.
    J Environ Manage; 2016 Jan 15; 166():499-511. PubMed ID: 26588812
    [Abstract] [Full Text] [Related]

  • 7. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH, Yan NQ, Liu ZR, Qu Z, Wang HP, Chang SG, Miller C.
    Environ Sci Technol; 2007 Feb 15; 41(4):1405-12. PubMed ID: 17593749
    [Abstract] [Full Text] [Related]

  • 8. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.
    Lee CW, Serre SD, Zhao Y, Lee SJ, Hastings TW.
    J Air Waste Manag Assoc; 2008 Apr 15; 58(4):484-93. PubMed ID: 18422035
    [Abstract] [Full Text] [Related]

  • 9. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.
    Niksa S, Fujiwara N.
    J Air Waste Manag Assoc; 2005 Jul 15; 55(7):970-7. PubMed ID: 16111136
    [Abstract] [Full Text] [Related]

  • 10. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H, Wu CY, Li Y, Zhang J.
    Environ Sci Technol; 2011 Sep 01; 45(17):7394-400. PubMed ID: 21770402
    [Abstract] [Full Text] [Related]

  • 11. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems.
    Niksa S, Helble JJ, Fujiwara N.
    Environ Sci Technol; 2001 Sep 15; 35(18):3701-6. PubMed ID: 11783648
    [Abstract] [Full Text] [Related]

  • 12. Mitigation of gaseous mercury emissions from waste-to-energy facilities: Homogeneous and heterogeneous Hg-oxidation pathways in presence of fly ashes.
    Rumayor M, Svoboda K, Švehla J, Pohořelý M, Šyc M.
    J Environ Manage; 2018 Jan 15; 206():276-283. PubMed ID: 29096141
    [Abstract] [Full Text] [Related]

  • 13. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW, Srivastava RK, Ghorishi SB, Hastings TW, Stevens FM.
    J Air Waste Manag Assoc; 2004 Dec 15; 54(12):1560-6. PubMed ID: 15648394
    [Abstract] [Full Text] [Related]

  • 14. The fate and behavior of mercury in coal-fired power plants.
    Meij R, Vredenbregt LH, te Winkel H.
    J Air Waste Manag Assoc; 2002 Aug 15; 52(8):912-7. PubMed ID: 12184689
    [Abstract] [Full Text] [Related]

  • 15. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases.
    Gao Y, Zhang Z, Wu J, Duan L, Umar A, Sun L, Guo Z, Wang Q.
    Environ Sci Technol; 2013 Oct 01; 47(19):10813-23. PubMed ID: 23991895
    [Abstract] [Full Text] [Related]

  • 16. Development of a mercury transformation model in coal combustion flue gas.
    Zhuang Y, Thompson JS, Zygarlicke CJ, Pavlish JH.
    Environ Sci Technol; 2004 Nov 01; 38(21):5803-8. PubMed ID: 15575303
    [Abstract] [Full Text] [Related]

  • 17. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.
    Lee CW, Srivastava RK, Ghorishi SB, Karwowski J, Hastings TW, Hirschi JC.
    J Air Waste Manag Assoc; 2006 May 01; 56(5):643-9. PubMed ID: 16739801
    [Abstract] [Full Text] [Related]

  • 18. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES, Crocker CR, Benson SA, Pavlish JH, Holmes MJ.
    J Air Waste Manag Assoc; 2005 Jun 01; 55(6):747-54. PubMed ID: 16022412
    [Abstract] [Full Text] [Related]

  • 19. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms.
    Krishnakumar B, Helble JJ.
    Environ Sci Technol; 2007 Nov 15; 41(22):7870-5. PubMed ID: 18075101
    [Abstract] [Full Text] [Related]

  • 20. Mercury capture by native fly ash carbons in coal-fired power plants.
    Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES.
    Prog Energy Combust Sci; 2010 Aug 01; 36(4):. PubMed ID: 24223466
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.