These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


294 related items for PubMed ID: 16111136

  • 21. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms.
    Krishnakumar B, Helble JJ.
    Environ Sci Technol; 2007 Nov 15; 41(22):7870-5. PubMed ID: 18075101
    [Abstract] [Full Text] [Related]

  • 22. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C, Machalek T, Miller S, Dene C, Chang R.
    J Air Waste Manag Assoc; 2002 Aug 15; 52(8):941-7. PubMed ID: 12184693
    [Abstract] [Full Text] [Related]

  • 23. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.
    Lee JY, Keener TC, Yang YJ.
    J Air Waste Manag Assoc; 2009 Jun 15; 59(6):725-32. PubMed ID: 19603740
    [Abstract] [Full Text] [Related]

  • 24. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR).
    Li Z, Jiang J, Ma Z, Fajardo OA, Deng J, Duan L.
    Environ Pollut; 2017 Nov 15; 230():655-662. PubMed ID: 28715770
    [Abstract] [Full Text] [Related]

  • 25. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES, Crocker CR, Benson SA, Pavlish JH, Holmes MJ.
    J Air Waste Manag Assoc; 2005 Jun 15; 55(6):747-54. PubMed ID: 16022412
    [Abstract] [Full Text] [Related]

  • 26. Fate of mercury in flue gas desulfurization gypsum determined by Temperature Programmed Decomposition and Sequential Chemical Extraction.
    Zhu Z, Zhuo Y, Fan Y, Wang Z.
    J Environ Sci (China); 2016 May 15; 43():169-176. PubMed ID: 27155422
    [Abstract] [Full Text] [Related]

  • 27. [Influence of Typical Desulfurization Process on Flue Gas Particulate Matter of Coal-fired Boilers].
    Zhang JS, Wu JH, LÜ RH, Song DL, Huang FX, Zhang YF, Feng YC.
    Huan Jing Ke Xue; 2020 Oct 08; 41(10):4455-4461. PubMed ID: 33124377
    [Abstract] [Full Text] [Related]

  • 28. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S, Duan Y, Chen L, Li Y, Yao T, Liu S, Liu M, Lu J.
    Environ Pollut; 2017 Oct 08; 229():863-870. PubMed ID: 28779897
    [Abstract] [Full Text] [Related]

  • 29. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H, Xu Z, Fan M, Bland AE, Judkins RR.
    J Hazard Mater; 2007 Jul 19; 146(1-2):1-11. PubMed ID: 17544578
    [Abstract] [Full Text] [Related]

  • 30. Utilization of Water Utility Lime Sludge for Flue Gas Desulfurization in Coal-Fired Power Plants: Part III. Testing at a Higher Scale and Assessment of Selected Potential Operational Issues.
    Dastgheib SA, Mock J, Salih HH, Patterson C.
    Energy Fuels; 2019 Jul 19; 33(11):11536-11543. PubMed ID: 31844359
    [Abstract] [Full Text] [Related]

  • 31. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry.
    Chen C, Liu S, Gao Y, Liu Y.
    ScientificWorldJournal; 2014 Jul 19; 2014():581724. PubMed ID: 24737981
    [Abstract] [Full Text] [Related]

  • 32. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.
    Głomba M.
    J Air Waste Manag Assoc; 2010 Aug 19; 60(8):1009-16. PubMed ID: 20842941
    [Abstract] [Full Text] [Related]

  • 33. Investigation of aerosol and gas emissions from a coal-fired power plant under various operating conditions.
    Li Z, Wang Y, Lu Y, Biswas P.
    J Air Waste Manag Assoc; 2019 Jan 19; 69(1):34-46. PubMed ID: 30047848
    [Abstract] [Full Text] [Related]

  • 34. Emission characteristics of PM, heavy metals, and dioxins in flue gases from sintering machines with wet and semi-dry flue gas desulfurization systems.
    Wang H, Zhang P.
    Environ Sci Pollut Res Int; 2021 Sep 19; 28(34):46089-46099. PubMed ID: 33188514
    [Abstract] [Full Text] [Related]

  • 35. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH, Yan NQ, Liu ZR, Qu Z, Wang HP, Chang SG, Miller C.
    Environ Sci Technol; 2007 Feb 15; 41(4):1405-12. PubMed ID: 17593749
    [Abstract] [Full Text] [Related]

  • 36. Mercury vapor pressure of flue gas desulfurization scrubber suspensions: effects of pH level, gypsum, and iron.
    Schuetze J, Kunth D, Weissbach S, Koeser H.
    Environ Sci Technol; 2012 Mar 06; 46(5):3008-13. PubMed ID: 22324514
    [Abstract] [Full Text] [Related]

  • 37. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW, Srivastava RK, Ghorishi SB, Hastings TW, Stevens FM.
    J Air Waste Manag Assoc; 2004 Dec 06; 54(12):1560-6. PubMed ID: 15648394
    [Abstract] [Full Text] [Related]

  • 38. Novel Counteraction Effect of H2O and SO2 toward HCl on the Chemical Adsorption of Gaseous Hg0 onto Sulfureted HPW/γ-Fe2O3 at Low Temperatures: Mechanism and Its Application in Hg0 Recovery from Coal-Fired Flue Gas.
    Wang C, Xie F, Chang S, Ding Z, Mei J, Yang S.
    Environ Sci Technol; 2022 Jan 04; 56(1):642-651. PubMed ID: 34902247
    [Abstract] [Full Text] [Related]

  • 39. Impact of Oxy-Fuel Conditions on Elemental Mercury Re-Emission in Wet Flue Gas Desulfurization Systems.
    Fernández-Miranda N, Lopez-Anton MA, Torre-Santos T, Díaz-Somoano M, Martínez-Tarazona MR.
    Environ Sci Technol; 2016 Jul 05; 50(13):7247-53. PubMed ID: 27329988
    [Abstract] [Full Text] [Related]

  • 40. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE, Ergut A, Levendis YA.
    J Air Waste Manag Assoc; 2002 May 05; 52(5):521-34. PubMed ID: 12022692
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.