These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, Schuderer J, Kuster N, Wobus AM. Bioelectromagnetics; 2004 May; 25(4):296-307. PubMed ID: 15114639 [Abstract] [Full Text] [Related]
3. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. Simkó M, Mattsson MO. J Cell Biochem; 2004 Sep 01; 93(1):83-92. PubMed ID: 15352165 [Abstract] [Full Text] [Related]
4. [Effect of 1.8 GHz radiofrequency electromagnetic fields on gene expression of rat neurons]. Zhang SZ, Yao GD, Lu DQ, Chiang H, Xu ZP. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Aug 01; 26(8):449-52. PubMed ID: 19358751 [Abstract] [Full Text] [Related]
5. Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells. Del Vecchio G, Giuliani A, Fernandez M, Mesirca P, Bersani F, Pinto R, Ardoino L, Lovisolo GA, Giardino L, Calzà L. Neurosci Lett; 2009 May 22; 455(3):173-7. PubMed ID: 19429115 [Abstract] [Full Text] [Related]
6. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW. Exp Biol Med (Maywood); 2013 Aug 01; 238(8):923-31. PubMed ID: 23970408 [Abstract] [Full Text] [Related]
7. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Duan W, Liu C, Zhang L, He M, Xu S, Chen C, Pi H, Gao P, Zhang Y, Zhong M, Yu Z, Zhou Z. Radiat Res; 2015 Mar 01; 183(3):305-14. PubMed ID: 25688995 [Abstract] [Full Text] [Related]
8. [Global gene response to GSM 1800 MHz radiofrequency electromagnetic field in MCF-7 cells]. Wang LL, Chen GD, Lu DQ, Chiang H, Xu ZP. Zhonghua Yu Fang Yi Xue Za Zhi; 2006 May 01; 40(3):159-63. PubMed ID: 16836876 [Abstract] [Full Text] [Related]
9. Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax : Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Tirado OM, Mateo-Lozano S, Notario V. Oncogene; 2005 May 05; 24(20):3348-57. PubMed ID: 15782132 [Abstract] [Full Text] [Related]
10. Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M, Zhong M, Yu Z, Chen C, Zhang Y. PLoS One; 2014 May 05; 9(3):e90041. PubMed ID: 24595264 [Abstract] [Full Text] [Related]
11. Modulation of apoptosis-associated genes bcl-2, bcl-x, and bax during rat liver regeneration. Kren BT, Trembley JH, Krajewski S, Behrens TW, Reed JC, Steer CJ. Cell Growth Differ; 1996 Dec 05; 7(12):1633-42. PubMed ID: 8959331 [Abstract] [Full Text] [Related]
12. Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Ding GR, Nakahara T, Tian FR, Guo Y, Miyakoshi J. Biochem Biophys Res Commun; 2001 Sep 07; 286(5):953-7. PubMed ID: 11527392 [Abstract] [Full Text] [Related]
13. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Seong Y, Moon J, Kim J. Life Sci; 2014 Apr 25; 102(1):16-27. PubMed ID: 24603130 [Abstract] [Full Text] [Related]
14. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z. Proteomics; 2006 Sep 25; 6(17):4732-8. PubMed ID: 16888767 [Abstract] [Full Text] [Related]
15. Cocaine-induced changes in the expression of apoptosis-related genes in the fetal mouse cerebral wall. Novikova SI, He F, Bai J, Badan I, Lidow IA, Lidow MS. Neurotoxicol Teratol; 2005 Sep 25; 27(1):3-14. PubMed ID: 15681117 [Abstract] [Full Text] [Related]
16. Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression. Chen G, Lu D, Chiang H, Leszczynski D, Xu Z. Bioelectromagnetics; 2012 Oct 25; 33(7):550-60. PubMed ID: 22487891 [Abstract] [Full Text] [Related]
17. Expression of apoptosis regulatory genes by retinal pericytes after rapid glucose reduction. Li W, Liu X, He Z, Yanoff M, Jian B, Ye X. Invest Ophthalmol Vis Sci; 1998 Aug 25; 39(9):1535-43. PubMed ID: 9699542 [Abstract] [Full Text] [Related]
18. Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation. Ismail IA, Kang KS, Lee HA, Kim JW, Sohn YK. Eur J Pharmacol; 2007 Dec 01; 575(1-3):12-20. PubMed ID: 17706963 [Abstract] [Full Text] [Related]
19. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Patruno A, Amerio P, Pesce M, Vianale G, Di Luzio S, Tulli A, Franceschelli S, Grilli A, Muraro R, Reale M. Br J Dermatol; 2010 Feb 01; 162(2):258-66. PubMed ID: 19799606 [Abstract] [Full Text] [Related]
20. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1. Ma Q, Chen C, Deng P, Zhu G, Lin M, Zhang L, Xu S, He M, Lu Y, Duan W, Pi H, Cao Z, Pei L, Li M, Liu C, Zhang Y, Zhong M, Zhou Z, Yu Z. PLoS One; 2016 Feb 01; 11(3):e0150923. PubMed ID: 26950212 [Abstract] [Full Text] [Related] Page: [Next] [New Search]