These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
444 related items for PubMed ID: 16121275
1. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ. Imai H, Kuwayama S, Onishi A, Morizumi T, Chisaka O, Shichida Y. Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275 [Abstract] [Full Text] [Related]
2. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Kuwayama S, Imai H, Morizumi T, Shichida Y. Biochemistry; 2005 Feb 15; 44(6):2208-15. PubMed ID: 15697246 [Abstract] [Full Text] [Related]
3. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment. Sato K, Yamashita T, Imamoto Y, Shichida Y. Biochemistry; 2012 May 29; 51(21):4300-8. PubMed ID: 22571736 [Abstract] [Full Text] [Related]
4. Single amino acid residue as a functional determinant of rod and cone visual pigments. Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y. Proc Natl Acad Sci U S A; 1997 Mar 18; 94(6):2322-6. PubMed ID: 9122193 [Abstract] [Full Text] [Related]
5. Studies on the stability of the human cone visual pigments. Ramon E, Mao X, Ridge KD. Photochem Photobiol; 2009 Mar 18; 85(2):509-16. PubMed ID: 19192203 [Abstract] [Full Text] [Related]
6. Is chicken green-sensitive cone visual pigment a rhodopsin-like pigment? A comparative study of the molecular properties between chicken green and rhodopsin. Shichida Y, Imai H, Imamoto Y, Fukada Y, Yoshizawa T. Biochemistry; 1994 Aug 09; 33(31):9040-4. PubMed ID: 8049204 [Abstract] [Full Text] [Related]
7. Molecular properties of chimerical mutants of gecko blue and bovine rhodopsin. Kojima D, Oura T, Hisatomi O, Tokunaga F, Fukada Y, Yoshizawa T, Shichida Y. Biochemistry; 1996 Feb 27; 35(8):2625-9. PubMed ID: 8611566 [Abstract] [Full Text] [Related]
8. Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Kuwayama S, Imai H, Hirano T, Terakita A, Shichida Y. Biochemistry; 2002 Dec 24; 41(51):15245-52. PubMed ID: 12484762 [Abstract] [Full Text] [Related]
9. Introduction of a rod pigment aromatic cluster does not improve the structural stability of the human green cone pigment. Giesbers ME, Bosman GJ, Bovee-Geurts PH, DeGrip WJ. J Struct Biol; 2007 Aug 24; 159(2):222-7. PubMed ID: 17368048 [Abstract] [Full Text] [Related]
11. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. Deeb SS, Wakefield MJ, Tada T, Marotte L, Yokoyama S, Marshall Graves JA. Mol Biol Evol; 2003 Oct 24; 20(10):1642-9. PubMed ID: 12885969 [Abstract] [Full Text] [Related]
12. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors. Xie HQ, Adler R. Invest Ophthalmol Vis Sci; 2000 Dec 24; 41(13):4317-23. PubMed ID: 11095633 [Abstract] [Full Text] [Related]
13. Amino acid residues controlling the properties and functions of rod and cone visual pigments. Shichida Y, Imai H. Novartis Found Symp; 1999 Dec 24; 224():142-53; discussion 153-7. PubMed ID: 10614050 [Abstract] [Full Text] [Related]
14. Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment. Imai H, Terakita A, Tachibanaki S, Imamoto Y, Yoshizawa T, Shichida Y. Biochemistry; 1997 Oct 21; 36(42):12773-9. PubMed ID: 9335534 [Abstract] [Full Text] [Related]
15. Molecular cloning of the salamander red and blue cone visual pigments. Xu L, Hazard ES, Lockman DK, Crouch RK, Ma J. Mol Vis; 1998 Jul 15; 4():10. PubMed ID: 9675215 [Abstract] [Full Text] [Related]
16. Analysis of amino acid residues in rhodopsin and cone visual pigments that determine their molecular properties. Imai H, Terakita A, Shichida Y. Methods Enzymol; 2000 Jul 15; 315():293-312. PubMed ID: 10736709 [No Abstract] [Full Text] [Related]
17. Visual pigment composition in zebrafish: Evidence for a rhodopsin-porphyropsin interchange system. Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE. Vis Neurosci; 2004 Jul 15; 21(6):945-52. PubMed ID: 15733349 [Abstract] [Full Text] [Related]
18. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments. Kojima K, Imamoto Y, Maeda R, Yamashita T, Shichida Y. J Biol Chem; 2014 Feb 21; 289(8):5061-73. PubMed ID: 24375403 [Abstract] [Full Text] [Related]
19. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. Sakurai K, Onishi A, Imai H, Chisaka O, Ueda Y, Usukura J, Nakatani K, Shichida Y. J Gen Physiol; 2007 Jul 21; 130(1):21-40. PubMed ID: 17591985 [Abstract] [Full Text] [Related]
20. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Imai H, Imamoto Y, Yoshizawa T, Shichida Y. Biochemistry; 1995 Aug 22; 34(33):10525-31. PubMed ID: 7654707 [Abstract] [Full Text] [Related] Page: [Next] [New Search]