These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 16133207

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.).
    Kallarackal J, Bauer SN, Nowak H, Hajirezaei MR, Komor E.
    Planta; 2012 Jul; 236(1):209-23. PubMed ID: 22328125
    [Abstract] [Full Text] [Related]

  • 24. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils.
    Wu S, Shen C, Yang Z, Lin B, Yuan J.
    Int J Phytoremediation; 2016 Nov; 18(11):1148-54. PubMed ID: 27348198
    [Abstract] [Full Text] [Related]

  • 25. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots.
    Peuke AD, Gessler A, Trumbore S, Windt CW, Homan N, Gerkema E, VAN As H.
    Plant Cell Environ; 2015 Mar; 38(3):433-47. PubMed ID: 24995994
    [Abstract] [Full Text] [Related]

  • 26. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism.
    Wu HX, Yang W, Zhang ZX, Huang T, Yao GK, Xu HH.
    J Agric Food Chem; 2012 Jun 20; 60(24):6088-94. PubMed ID: 22587652
    [Abstract] [Full Text] [Related]

  • 27. Sugar uptake and translocation in the castor bean seedling I. Characteristics of transfer in intact and excised seedlings.
    Kriedemann P, Beevers H.
    Plant Physiol; 1967 Feb 20; 42(2):161-73. PubMed ID: 16656492
    [Abstract] [Full Text] [Related]

  • 28. Mapping the castor bean endosperm proteome revealed a metabolic interaction between plastid, mitochondria, and peroxisomes to optimize seedling growth.
    Wrobel TJ, Brilhaus D, Stefanski A, Stühler K, Weber APM, Linka N.
    Front Plant Sci; 2023 Feb 20; 14():1182105. PubMed ID: 37868318
    [Abstract] [Full Text] [Related]

  • 29. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.
    Chen LS, Nose A.
    Ann Bot; 2004 Sep 20; 94(3):449-55. PubMed ID: 15277250
    [Abstract] [Full Text] [Related]

  • 30. Fatal Attraction: Ricinus communis Provides an Attractive but Risky Mating Site for Holotrichia parallela Beetles.
    Zhang H, Li W, Luo Q, Yang L, Gong D, Teng X, Guo X, Yuan G.
    J Chem Ecol; 2018 Oct 20; 44(10):965-974. PubMed ID: 30116996
    [Abstract] [Full Text] [Related]

  • 31. Antisense-inhibition of ADP-glucose pyrophosphorylase in Vicia narbonensis seeds increases soluble sugars and leads to higher water and nitrogen uptake.
    Rolletschek H, Hajirezaei MR, Wobus U, Weber H.
    Planta; 2002 Apr 20; 214(6):954-64. PubMed ID: 11941473
    [Abstract] [Full Text] [Related]

  • 32. The breakdown of lipid reserves in the endosperm of germinating castor beans.
    Marriott KM, Northcote DH.
    Biochem J; 1975 Apr 20; 148(1):139-44. PubMed ID: 1156393
    [Abstract] [Full Text] [Related]

  • 33. Castor bean (Ricinus communis L.) as a potential environmental bioindicator.
    Mendes MG, Santos Junior CD, Dias AC, Bonetti AM.
    Genet Mol Res; 2015 Oct 21; 14(4):12880-7. PubMed ID: 26505440
    [Abstract] [Full Text] [Related]

  • 34. Changes in the expression pattern of the plasma membrane H+-ATPase in developing Ricinus communis cotyledons undergoing the sink/source transition.
    Williams LE, Gregory A.
    Planta; 2004 Feb 21; 218(4):562-8. PubMed ID: 14661107
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Respiratory changes during seed germination. Histological distribution of respiratory enzymes and mobilization of fat reserves in castor bean endosperm and peanut cotyledons.
    Castelfranco P, Lott J, Sabar N.
    Plant Physiol; 1969 Jun 21; 44(6):789-95. PubMed ID: 4307974
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.
    Rosa M, Hilal M, González JA, Prado FE.
    Plant Physiol Biochem; 2009 Apr 21; 47(4):300-7. PubMed ID: 19124255
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo.
    Rolletschek H, Koch K, Wobus U, Borisjuk L.
    Plant J; 2005 Apr 21; 42(1):69-83. PubMed ID: 15773854
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.