These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
335 related items for PubMed ID: 16140257
1. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT. Arch Biochem Biophys; 2005 Oct 01; 442(1):102-16. PubMed ID: 16140257 [Abstract] [Full Text] [Related]
2. Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction. Morrison E, Kantz A, Gassner GT, Sazinsky MH. Biochemistry; 2013 Sep 03; 52(35):6063-75. PubMed ID: 23909369 [Abstract] [Full Text] [Related]
3. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase. Kantz A, Gassner GT. Biochemistry; 2011 Feb 01; 50(4):523-32. PubMed ID: 21166448 [Abstract] [Full Text] [Related]
4. The styrene monooxygenase system. Gassner GT. Methods Enzymol; 2019 Feb 01; 620():423-453. PubMed ID: 31072496 [Abstract] [Full Text] [Related]
5. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmid A. J Bacteriol; 2004 Aug 01; 186(16):5292-302. PubMed ID: 15292130 [Abstract] [Full Text] [Related]
6. Structure and ligand binding properties of the epoxidase component of styrene monooxygenase . Ukaegbu UE, Kantz A, Beaton M, Gassner GT, Rosenzweig AC. Biochemistry; 2010 Mar 02; 49(8):1678-88. PubMed ID: 20055497 [Abstract] [Full Text] [Related]
7. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase. Lin TY, Werther T, Jeoung JH, Dobbek H. J Biol Chem; 2012 Nov 02; 287(45):38338-46. PubMed ID: 22992736 [Abstract] [Full Text] [Related]
8. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins. Heine T, Tucker K, Okonkwo N, Assefa B, Conrad C, Scholtissek A, Schlömann M, Gassner G, Tischler D. Appl Biochem Biotechnol; 2017 Apr 02; 181(4):1590-1610. PubMed ID: 27830466 [Abstract] [Full Text] [Related]
9. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1. Gröning JA, Kaschabek SR, Schlömann M, Tischler D. Arch Microbiol; 2014 Dec 02; 196(12):829-45. PubMed ID: 25116410 [Abstract] [Full Text] [Related]
10. Characterization of two components of the 2-naphthoate monooxygenase system from Burkholderia sp. strain JT1500. Deng D, Li X, Fang X, Sun G. FEMS Microbiol Lett; 2007 Aug 02; 273(1):22-7. PubMed ID: 17559398 [Abstract] [Full Text] [Related]
11. Electron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276. Gallagher SC, Cammack R, Dalton H. Biochem J; 1999 Apr 01; 339 ( Pt 1)(Pt 1):79-85. PubMed ID: 10085230 [Abstract] [Full Text] [Related]
12. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G. Biochemistry; 2005 Oct 11; 44(40):13291-303. PubMed ID: 16201755 [Abstract] [Full Text] [Related]
13. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Yeh E, Cole LJ, Barr EW, Bollinger JM, Ballou DP, Walsh CT. Biochemistry; 2006 Jun 27; 45(25):7904-12. PubMed ID: 16784243 [Abstract] [Full Text] [Related]
14. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Lee HJ, Basran J, Scrutton NS. Biochemistry; 1998 Nov 03; 37(44):15513-22. PubMed ID: 9799514 [Abstract] [Full Text] [Related]
15. Kinetics of the reductive half-reaction of the iron-sulfur flavoenzyme CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase. Gassner GT, Johnson DA, Liu HW, Ballou DP. Biochemistry; 1996 Jun 18; 35(24):7752-61. PubMed ID: 8672475 [Abstract] [Full Text] [Related]
16. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N, Lê KH, Terrier M, Lederer F. Biochemistry; 2007 Apr 17; 46(15):4661-70. PubMed ID: 17373777 [Abstract] [Full Text] [Related]
17. Regenerable copper anode for the Cu(I)-mediated reduction of FAD in the electroenzymatic styrene epoxidation reaction. Amongre R, Gassner G. Bioelectrochemistry; 2021 Feb 17; 137():107679. PubMed ID: 33120296 [Abstract] [Full Text] [Related]
18. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Kim SH, Hisano T, Iwasaki W, Ebihara A, Miki K. Proteins; 2008 Feb 15; 70(3):718-30. PubMed ID: 17729270 [Abstract] [Full Text] [Related]
20. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme. Tittmann K, Schröder K, Golbik R, McCourt J, Kaplun A, Duggleby RG, Barak Z, Chipman DM, Hübner G. Biochemistry; 2004 Jul 13; 43(27):8652-61. PubMed ID: 15236573 [Abstract] [Full Text] [Related] Page: [Next] [New Search]