These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
2675 related items for PubMed ID: 16140383
1. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383 [Abstract] [Full Text] [Related]
2. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. Ophthalmology; 2006 Nov; 113(11):2054.e1-14. PubMed ID: 17074565 [Abstract] [Full Text] [Related]
3. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A, Bursell SE, Song QH, Lem J, Duker JS, Schuman JS, Fujimoto JG. Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144 [Abstract] [Full Text] [Related]
5. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG. Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5103-10. PubMed ID: 18658089 [Abstract] [Full Text] [Related]
6. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA. Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515 [Abstract] [Full Text] [Related]
7. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I, Drexler W, Wollstein G, Ishikawa H, Duker JS. Ophthalmology; 2005 Nov; 112(11):1922.e1-15. PubMed ID: 16183127 [Abstract] [Full Text] [Related]
8. Adjusted peripapillary retinal nerve fiber layer thickness measurements based on the optic nerve head scan angle. Hong S, Kim CY, Seong GJ. Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4067-74. PubMed ID: 20237251 [Abstract] [Full Text] [Related]
10. In vivo imaging of the mouse retina using high-resolution optical coherence tomography. Machalińska A, Lejkowska R, Duchnik M, Rogińska D, Kawa M, Wiszniewska B. Klin Oczna; 2014 Jul; 116(1):11-5. PubMed ID: 25137914 [Abstract] [Full Text] [Related]
11. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG. Opt Express; 2008 Sep 15; 16(19):15149-69. PubMed ID: 18795054 [Abstract] [Full Text] [Related]
12. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, Yamanari M, Yatagai T, Kita M, Yoshimura N. Ophthalmology; 2007 Apr 15; 114(4):763-73. PubMed ID: 17187861 [Abstract] [Full Text] [Related]
13. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N. Ophthalmology; 2009 Feb 15; 116(2):214-22. PubMed ID: 19091413 [Abstract] [Full Text] [Related]
14. Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT. Menke MN, Knecht P, Sturm V, Dabov S, Funk J. Invest Ophthalmol Vis Sci; 2008 Dec 15; 49(12):5386-91. PubMed ID: 18676630 [Abstract] [Full Text] [Related]
15. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography. Sakamoto A, Hangai M, Nukada M, Nakanishi H, Mori S, Kotera Y, Inoue R, Yoshimura N. Invest Ophthalmol Vis Sci; 2010 Oct 15; 51(10):5062-70. PubMed ID: 20463326 [Abstract] [Full Text] [Related]
16. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography. Menke MN, Dabov S, Sturm V. Br J Ophthalmol; 2008 Nov 15; 92(11):1492-7. PubMed ID: 18703554 [Abstract] [Full Text] [Related]
18. Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ojima Y, Hangai M, Sasahara M, Gotoh N, Inoue R, Yasuno Y, Makita S, Yatagai T, Tsujikawa A, Yoshimura N. Ophthalmology; 2007 Dec 15; 114(12):2197-207. PubMed ID: 17507096 [Abstract] [Full Text] [Related]
19. Thickness mapping of the inner retina by spectral-domain optical coherence tomography in an N-methyl-D-aspartate-induced retinal damage model. Ohno Y, Makita S, Shimazawa M, Tsuruma K, Yasuno Y, Hara H. Exp Eye Res; 2013 Aug 15; 113():19-25. PubMed ID: 23707241 [Abstract] [Full Text] [Related]
20. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigley HA, Tielsch J. Ophthalmology; 2007 Jun 15; 114(6):1046-52. PubMed ID: 17210181 [Abstract] [Full Text] [Related] Page: [Next] [New Search]