These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 16143392

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering.
    Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D.
    J Mater Sci Mater Med; 2011 Mar; 22(3):683-92. PubMed ID: 21287239
    [Abstract] [Full Text] [Related]

  • 3. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering.
    Ni S, Chang J, Chou L.
    J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts.
    Yang L, Perez-Amodio S, Barrère-de Groot FY, Everts V, van Blitterswijk CA, Habibovic P.
    Biomaterials; 2010 Apr; 31(11):2976-89. PubMed ID: 20122718
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G, Zhao L, Cui L, Liu W, Cao Y.
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [Abstract] [Full Text] [Related]

  • 8. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z, Zhang X, Li L, Wang Q, Yu X, Feng T.
    Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):274-81. PubMed ID: 25428072
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds.
    Wang X, Tang P, Xu Y, Yang X, Yu X.
    Int J Biol Macromol; 2016 Dec 01; 93(Pt B):1583-1590. PubMed ID: 27103494
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: Strontium-doped calcium polyphosphate.
    Qin H, Yang Z, Li L, Yang X, Liu J, Chen X, Yu X.
    Dent Mater J; 2016 Dec 01; 35(2):241-9. PubMed ID: 27041014
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V.
    J Tissue Eng Regen Med; 2009 Feb 01; 3(2):139-48. PubMed ID: 19170250
    [Abstract] [Full Text] [Related]

  • 18. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec 01; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs.
    Chen YW, Shi GQ, Ding YL, Yu XX, Zhang XH, Zhao CS, Wan CX.
    J Mater Sci Mater Med; 2008 Jul 01; 19(7):2655-62. PubMed ID: 18197373
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.