These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 16143645

  • 1. The direct physiological effects of mitoK(ATP) opening on heart mitochondria.
    Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD.
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H406-15. PubMed ID: 16143645
    [Abstract] [Full Text] [Related]

  • 2. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain.
    Andrukhiv A, Costa AD, West IC, Garlid KD.
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2067-74. PubMed ID: 16798828
    [Abstract] [Full Text] [Related]

  • 3. The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration.
    Lim KH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP.
    J Physiol; 2002 Dec 15; 545(3):961-74. PubMed ID: 12482899
    [Abstract] [Full Text] [Related]

  • 4. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S, Piel S, Hansson MJ.
    BMC Cell Biol; 2013 Sep 22; 14():40. PubMed ID: 24053891
    [Abstract] [Full Text] [Related]

  • 5. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume.
    Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E.
    J Biol Chem; 2010 Jan 01; 285(1):741-50. PubMed ID: 19880514
    [Abstract] [Full Text] [Related]

  • 6. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain.
    Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P.
    J Biol Chem; 2001 Sep 07; 276(36):33369-74. PubMed ID: 11441006
    [Abstract] [Full Text] [Related]

  • 7. K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling.
    Dröse S, Brandt U, Hanley PJ.
    J Biol Chem; 2006 Aug 18; 281(33):23733-9. PubMed ID: 16709571
    [Abstract] [Full Text] [Related]

  • 8. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.
    Brustovetsky T, Shalbuyeva N, Brustovetsky N.
    J Physiol; 2005 Oct 01; 568(Pt 1):47-59. PubMed ID: 16051627
    [Abstract] [Full Text] [Related]

  • 9. Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts.
    Jin C, Wu J, Watanabe M, Okada T, Iesaki T.
    J Physiol Sci; 2012 Jul 01; 62(4):325-32. PubMed ID: 22528048
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices.
    Wang J, Li Z, Feng M, Ren K, Shen G, Zhao C, Jin X, Jiang K.
    PLoS One; 2013 Jul 01; 8(2):e56605. PubMed ID: 23418587
    [Abstract] [Full Text] [Related]

  • 13. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells.
    Akao M, Ohler A, O'Rourke B, Marbán E.
    Circ Res; 2001 Jun 22; 88(12):1267-75. PubMed ID: 11420303
    [Abstract] [Full Text] [Related]

  • 14. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW, Katakam P, Rajapakse NC, Kis B, Grover G, Domoki F, Bari F.
    Brain Res Bull; 2005 Jul 30; 66(2):85-90. PubMed ID: 15982523
    [Abstract] [Full Text] [Related]

  • 15. Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria.
    Bednarczyk P, Barker GD, Halestrap AP.
    Biochim Biophys Acta; 2008 Jun 30; 1777(6):540-8. PubMed ID: 18471430
    [Abstract] [Full Text] [Related]

  • 16. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria.
    Holmuhamedov EL, Wang L, Terzic A.
    J Physiol; 1999 Sep 01; 519 Pt 2(Pt 2):347-60. PubMed ID: 10457054
    [Abstract] [Full Text] [Related]

  • 17. Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning.
    Korge P, Honda HM, Weiss JN.
    Proc Natl Acad Sci U S A; 2002 Mar 05; 99(5):3312-7. PubMed ID: 11867760
    [Abstract] [Full Text] [Related]

  • 18. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels.
    Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL.
    Circ Res; 2001 Dec 07; 89(12):1177-83. PubMed ID: 11739283
    [Abstract] [Full Text] [Related]

  • 19. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide.
    Wang Y, Kudo M, Xu M, Ayub A, Ashraf M.
    J Mol Cell Cardiol; 2001 Nov 07; 33(11):2037-46. PubMed ID: 11708847
    [Abstract] [Full Text] [Related]

  • 20. Opening mitochondrial K(ATP) in the heart--what happens, and what does not happen.
    Garlid KD.
    Basic Res Cardiol; 2000 Aug 07; 95(4):275-9. PubMed ID: 11005581
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.