These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
658 related items for PubMed ID: 16144402
1. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides. Cheng F, Sun H, Zhang Y, Mukkamala D, Oldfield E. J Am Chem Soc; 2005 Sep 14; 127(36):12544-54. PubMed ID: 16144402 [Abstract] [Full Text] [Related]
2. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins. Mukkamala D, Zhang Y, Oldfield E. J Am Chem Soc; 2007 Jun 13; 129(23):7385-92. PubMed ID: 17506558 [Abstract] [Full Text] [Related]
3. 31P NMR chemical shifts in hypervalent oxyphosphoranes and polymeric orthophosphates. Zhang Y, Oldfield E. J Phys Chem B; 2006 Jan 12; 110(1):579-86. PubMed ID: 16471570 [Abstract] [Full Text] [Related]
4. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state. Uldry AC, Griffin JM, Yates JR, Pérez-Torralba M, María MD, Webber AL, Beaumont ML, Samoson A, Claramunt RM, Pickard CJ, Brown SP. J Am Chem Soc; 2008 Jan 23; 130(3):945-54. PubMed ID: 18166050 [Abstract] [Full Text] [Related]
5. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy. Bhate MP, Woodard JC, Mehta MA. J Am Chem Soc; 2009 Jul 15; 131(27):9579-89. PubMed ID: 19537718 [Abstract] [Full Text] [Related]
6. Theoretical 13C chemical shift, 14N, and 2H quadrupole coupling- constant studies of hydrogen bonding in L-alanylglycine dipeptide. Tafazzoli M, Amini SK. Magn Reson Chem; 2008 Apr 15; 46(4):370-6. PubMed ID: 18273875 [Abstract] [Full Text] [Related]
7. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S, Konschin H, Sundholm D. Phys Chem Chem Phys; 2005 Jul 07; 7(13):2561-9. PubMed ID: 16189565 [Abstract] [Full Text] [Related]
8. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion. Strohmeier M, Barich DH, Grant DM, Miller JS, Pugmire RJ, Simons J. J Phys Chem A; 2006 Jun 29; 110(25):7962-9. PubMed ID: 16789786 [Abstract] [Full Text] [Related]
9. Probing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet. Kwan IC, Mo X, Wu G. J Am Chem Soc; 2007 Feb 28; 129(8):2398-407. PubMed ID: 17269776 [Abstract] [Full Text] [Related]
10. Intramolecular hydrogen bonding of novel o-hydroxythioacetophenones and related compounds evaluated by deuterium isotope effects on 13C chemical shifts. Nguyen TT, Le TN, Duus F, Hansen BK, Hansen PE. Magn Reson Chem; 2007 Mar 28; 45(3):245-52. PubMed ID: 17290362 [Abstract] [Full Text] [Related]
11. (67)Zn NMR chemical shifts and electric field gradients in zinc complexes: a quantum chemical investigation. Zhang Y, Mukherjee S, Oldfield E. J Am Chem Soc; 2005 Mar 02; 127(8):2370-1. PubMed ID: 15724973 [Abstract] [Full Text] [Related]
12. Tryptophan chemical shift in peptides and proteins: a solid state carbon-13 nuclear magnetic resonance spectroscopic and quantum chemical investigation. Sun H, Oldfield E. J Am Chem Soc; 2004 Apr 14; 126(14):4726-34. PubMed ID: 15070392 [Abstract] [Full Text] [Related]
13. Identification of histidine tautomers in proteins by 2D 1H/13C(delta2) one-bond correlated NMR. Sudmeier JL, Bradshaw EM, Haddad KE, Day RM, Thalhauser CJ, Bullock PA, Bachovchin WW. J Am Chem Soc; 2003 Jul 16; 125(28):8430-1. PubMed ID: 12848537 [Abstract] [Full Text] [Related]
14. Bifurcated hydrogen-bonding effect on the shielding and coupling constants in trifluoroacetyl pyrroles as studied by 1H, 13C and 15N NMR spectroscopy and DFT calculations. Afonin AV, Ushakov IA, Mikhaleva AI, Trofimov BA. Magn Reson Chem; 2007 Mar 16; 45(3):220-30. PubMed ID: 17221917 [Abstract] [Full Text] [Related]
15. Density functional theory investigation of hydrogen bonding effects on the oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors of anhydrous chitosan crystalline structure. Esrafili MD, Elmi F, Hadipour NL. J Phys Chem A; 2007 Feb 08; 111(5):963-70. PubMed ID: 17266238 [Abstract] [Full Text] [Related]
17. 13C and 15N NMR studies of iron-bound cyanides of heme proteins and related model complexes: sensitive probe for detecting hydrogen-bonding interactions at the proximal and distal sides. Fujii H, Yoshida T. Inorg Chem; 2006 Aug 21; 45(17):6816-27. PubMed ID: 16903738 [Abstract] [Full Text] [Related]
18. Understanding sterol-membrane interactions, part II: complete 1H and 13C assignments by solid-state NMR spectroscopy and determination of the hydrogen-bonding partners of cholesterol in a lipid bilayer. Soubias O, Jolibois F, Réat V, Milon A. Chemistry; 2004 Nov 19; 10(23):6005-14. PubMed ID: 15497136 [Abstract] [Full Text] [Related]
19. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline. Pazderski L, Tousek J, Sitkowski J, Kozerski L, Szłyk E. Magn Reson Chem; 2007 Dec 19; 45(12):1059-71. PubMed ID: 18044805 [Abstract] [Full Text] [Related]
20. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids. Kolehmainen E, Tuppurainen K, Lanina SA, Sievänen E, Laihia K, Boyarskiy VP, Nikiforov VA, Zhesko TE. Chemosphere; 2006 Jan 19; 62(3):368-74. PubMed ID: 15992857 [Abstract] [Full Text] [Related] Page: [Next] [New Search]