These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Basic fibroblast growth factor endows dorsal telencephalic neural progenitors with the ability to differentiate into oligodendrocytes but not gamma-aminobutyric acidergic neurons. Abematsu M, Kagawa T, Fukuda S, Inoue T, Takebayashi H, Komiya S, Taga T. J Neurosci Res; 2006 Apr; 83(5):731-43. PubMed ID: 16496354 [Abstract] [Full Text] [Related]
23. The homeodomain transcription factor Gbx1 identifies a subpopulation of late-born GABAergic interneurons in the developing dorsal spinal cord. John A, Wildner H, Britsch S. Dev Dyn; 2005 Nov; 234(3):767-71. PubMed ID: 16193514 [Abstract] [Full Text] [Related]
25. [Regulation of development of oligodendrocyte]. Shimizu T, Nakahira E, Kagawa T, Ikenaka K. Nihon Shinkei Seishin Yakurigaku Zasshi; 2003 Jun; 23(3):129-34. PubMed ID: 12884753 [Abstract] [Full Text] [Related]
26. The TGFbeta intracellular effector Smad3 regulates neuronal differentiation and cell fate specification in the developing spinal cord. García-Campmany L, Martí E. Development; 2007 Jan; 134(1):65-75. PubMed ID: 17138664 [Abstract] [Full Text] [Related]
27. Developmental regulation of activated ERK expression in the spinal cord and dorsal root ganglion of the chick embryo. Kato T, Ohtani-Kaneko R, Ono K, Okado N, Shiga T. Neurosci Res; 2005 May; 52(1):11-9. PubMed ID: 15811548 [Abstract] [Full Text] [Related]
28. Coexpression of SCL and GATA3 in the V2 interneurons of the developing mouse spinal cord. Smith E, Hargrave M, Yamada T, Begley CG, Little MH. Dev Dyn; 2002 Jun; 224(2):231-7. PubMed ID: 12112475 [Abstract] [Full Text] [Related]
32. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Nat Neurosci; 2006 Jun; 9(6):770-8. PubMed ID: 16715081 [Abstract] [Full Text] [Related]
33. Transient expression of Bis protein in midline radial glia in developing rat brainstem and spinal cord. Choi JS, Lee JH, Shin YJ, Lee JY, Yun H, Chun MH, Lee MY. Cell Tissue Res; 2009 Jul; 337(1):27-36. PubMed ID: 19415333 [Abstract] [Full Text] [Related]
34. Expression pattern of BM88 in the developing nervous system of the chick and mouse embryo. Politis PK, Rohrer H, Matsas R. Gene Expr Patterns; 2007 Jan; 7(1-2):165-77. PubMed ID: 16949349 [Abstract] [Full Text] [Related]
35. Megalin deficiency induces critical changes in mouse spinal cord development. Wicher G, Aldskogius H. Neuroreport; 2008 Mar 26; 19(5):559-63. PubMed ID: 18388738 [Abstract] [Full Text] [Related]
38. Sim1 is required for the migration and axonal projections of V3 interneurons in the developing mouse spinal cord. Blacklaws J, Deska-Gauthier D, Jones CT, Petracca YL, Liu M, Zhang H, Fawcett JP, Glover JC, Lanuza GM, Zhang Y. Dev Neurobiol; 2015 Sep 26; 75(9):1003-17. PubMed ID: 25652362 [Abstract] [Full Text] [Related]
39. Olig2 lineage cells generate GABAergic neurons in the prethalamic nuclei, including the zona incerta, ventral lateral geniculate nucleus and reticular thalamic nucleus. Inamura N, Ono K, Takebayashi H, Zalc B, Ikenaka K. Dev Neurosci; 2011 Sep 26; 33(2):118-29. PubMed ID: 21865661 [Abstract] [Full Text] [Related]
40. Expression patterns of Hox10 paralogous genes during lumbar spinal cord development. Choe A, Phun HQ, Tieu DD, Hu YH, Carpenter EM. Gene Expr Patterns; 2006 Oct 26; 6(7):730-7. PubMed ID: 16495162 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]