These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 16157370

  • 1. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering.
    Danielsson C, Ruault S, Simonet M, Neuenschwander P, Frey P.
    Biomaterials; 2006 Mar; 27(8):1410-5. PubMed ID: 16157370
    [Abstract] [Full Text] [Related]

  • 2. In-vitro engineering of implantable human urinary tract tissue matrices.
    Danielsson C, Adelöw C, Hubschmid U, Neuenschwander P, Frey P.
    Swiss Med Wkly; 2007 Mar 02; 137 Suppl 155():93S-98S. PubMed ID: 17874511
    [Abstract] [Full Text] [Related]

  • 3. [Experimental studies on canine bladder smooth muscle cells cultured on acellular small intestinal submucosa in vitro].
    Han P, Yang Z, Zhi W.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec 02; 21(12):1366-70. PubMed ID: 18277686
    [Abstract] [Full Text] [Related]

  • 4. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS, Kim SH, Kim YH, Kim IH, Kim SH.
    J Biomater Sci Polym Ed; 2009 Dec 02; 20(11):1645-60. PubMed ID: 19619403
    [Abstract] [Full Text] [Related]

  • 5. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.
    Yang C, Sodian R, Fu P, Lüders C, Lemke T, Du J, Hübler M, Weng Y, Meyer R, Hetzer R.
    Ann Thorac Surg; 2006 Jan 02; 81(1):57-63. PubMed ID: 16368335
    [Abstract] [Full Text] [Related]

  • 6. Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds.
    Glawe JD, Hill JB, Mills DK, McShane MJ.
    J Biomed Mater Res A; 2005 Oct 01; 75(1):106-14. PubMed ID: 16052500
    [Abstract] [Full Text] [Related]

  • 7. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study.
    Kadner A, Zund G, Maurus C, Breymann C, Yakarisik S, Kadner G, Turina M, Hoerstrup SP.
    Eur J Cardiothorac Surg; 2004 Apr 01; 25(4):635-41. PubMed ID: 15037283
    [Abstract] [Full Text] [Related]

  • 8. Morphologic features of biocompatibility and neoangiogenesis onto a biodegradable tracheal prosthesis in an animal model.
    Brizzola S, de Eguileor M, Brevini T, Grimaldi A, Congiu T, Neuenschwander P, Acocella F.
    Interact Cardiovasc Thorac Surg; 2009 Jun 01; 8(6):610-4. PubMed ID: 19289397
    [Abstract] [Full Text] [Related]

  • 9. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain.
    Cha JM, Park SN, Noh SH, Suh H.
    Artif Organs; 2006 Apr 01; 30(4):250-8. PubMed ID: 16643383
    [Abstract] [Full Text] [Related]

  • 10. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro].
    Wen SJ, Zhao LM, Li P, Li JX, Liu Y, Liu JL, Chen YC.
    Zhonghua Yi Xue Za Zhi; 2005 Mar 30; 85(12):816-8. PubMed ID: 15949397
    [Abstract] [Full Text] [Related]

  • 11. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds.
    Riboldi SA, Sadr N, Pigini L, Neuenschwander P, Simonet M, Mognol P, Sampaolesi M, Cossu G, Mantero S.
    J Biomed Mater Res A; 2008 Mar 15; 84(4):1094-101. PubMed ID: 17685407
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Enhanced smooth muscle cell adhesion and proliferation on protein-modified polycaprolactone-based copolymers.
    Bramfeldt H, Vermette P.
    J Biomed Mater Res A; 2009 Feb 15; 88(2):520-30. PubMed ID: 18306310
    [Abstract] [Full Text] [Related]

  • 14. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds.
    Grenier S, Sandig M, Holdsworth DW, Mequanint K.
    J Biomed Mater Res A; 2009 May 15; 89(2):293-303. PubMed ID: 18431771
    [Abstract] [Full Text] [Related]

  • 15. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films.
    Serrano MC, Pagani R, Manzano M, Comas JV, Portolés MT.
    Biomaterials; 2006 Sep 15; 27(27):4706-14. PubMed ID: 16730794
    [Abstract] [Full Text] [Related]

  • 16. Compressed collagen gel: a novel scaffold for human bladder cells.
    Engelhardt EM, Stegberg E, Brown RA, Hubbell JA, Wurm FM, Adam M, Frey P.
    J Tissue Eng Regen Med; 2010 Feb 15; 4(2):123-30. PubMed ID: 19842107
    [Abstract] [Full Text] [Related]

  • 17. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold.
    Sharifpoor S, Simmons CA, Labow RS, Paul Santerre J.
    Biomaterials; 2011 Jul 15; 32(21):4816-29. PubMed ID: 21463894
    [Abstract] [Full Text] [Related]

  • 18. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells.
    Grenier S, Sandig M, Mequanint K.
    J Biomed Mater Res A; 2007 Sep 15; 82(4):802-9. PubMed ID: 17326143
    [Abstract] [Full Text] [Related]

  • 19. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F, Li Z, Lannutti JL, Wagner WR, Guan J.
    Acta Biomater; 2009 Oct 15; 5(8):2901-12. PubMed ID: 19433136
    [Abstract] [Full Text] [Related]

  • 20. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering.
    Izquierdo R, Garcia-Giralt N, Rodriguez MT, Cáceres E, García SJ, Gómez Ribelles JL, Monleón M, Monllau JC, Suay J.
    J Biomed Mater Res A; 2008 Apr 15; 85(1):25-35. PubMed ID: 17688257
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.