These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1251 related items for PubMed ID: 16164993

  • 1. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D.
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [Abstract] [Full Text] [Related]

  • 2. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.
    Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D.
    J Mol Biol; 2008 Sep 19; 381(5):1224-37. PubMed ID: 18602926
    [Abstract] [Full Text] [Related]

  • 3. A truncated aminoacyl-tRNA synthetase modifies RNA.
    Salazar JC, Ambrogelly A, Crain PF, McCloskey JA, Söll D.
    Proc Natl Acad Sci U S A; 2004 May 18; 101(20):7536-41. PubMed ID: 15096612
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon.
    Blaise M, Becker HD, Keith G, Cambillau C, Lapointe J, Giegé R, Kern D.
    Nucleic Acids Res; 2004 May 18; 32(9):2768-75. PubMed ID: 15150343
    [Abstract] [Full Text] [Related]

  • 6. An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp.
    Dubois DY, Blaise M, Becker HD, Campanacci V, Keith G, Giegé R, Cambillau C, Lapointe J, Kern D.
    Proc Natl Acad Sci U S A; 2004 May 18; 101(20):7530-5. PubMed ID: 15096594
    [Abstract] [Full Text] [Related]

  • 7. Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code?
    Grosjean H, de Crécy-Lagard V, Björk GR.
    Trends Biochem Sci; 2004 Oct 18; 29(10):519-22. PubMed ID: 15450604
    [Abstract] [Full Text] [Related]

  • 8. Glutamyl-tRNA sythetase.
    Freist W, Gauss DH, Söll D, Lapointe J.
    Biol Chem; 1997 Nov 18; 378(11):1313-29. PubMed ID: 9426192
    [Abstract] [Full Text] [Related]

  • 9. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM, Hou YM.
    Biochemistry; 2005 May 17; 44(19):7240-9. PubMed ID: 15882062
    [Abstract] [Full Text] [Related]

  • 10. A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications.
    Dubois DY, Blais SP, Huot JL, Lapointe J.
    Biochemistry; 2009 Jun 30; 48(25):6012-21. PubMed ID: 19496540
    [Abstract] [Full Text] [Related]

  • 11. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain.
    Sauter C, Lorber B, Cavarelli J, Moras D, Giegé R.
    J Mol Biol; 2000 Jun 23; 299(5):1313-24. PubMed ID: 10873455
    [Abstract] [Full Text] [Related]

  • 12. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase.
    Cavarelli J, Rees B, Ruff M, Thierry JC, Moras D.
    Nature; 1993 Mar 11; 362(6416):181-4. PubMed ID: 8450889
    [Abstract] [Full Text] [Related]

  • 13. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
    Buechter DD, Schimmel P.
    Crit Rev Biochem Mol Biol; 1993 Mar 11; 28(4):309-22. PubMed ID: 7691478
    [Abstract] [Full Text] [Related]

  • 14. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH, Pelka H.
    Fed Proc; 1984 Dec 11; 43(15):2977-80. PubMed ID: 6389181
    [Abstract] [Full Text] [Related]

  • 15. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.
    Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G.
    FEBS Lett; 2009 Jun 18; 583(12):2114-20. PubMed ID: 19481543
    [Abstract] [Full Text] [Related]

  • 16. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M, Thomann HU, Hong KW, Sherman JM, Weygand-Durasevic I, Sever S, Stange-Thomann N, Praetorius M, Söll D.
    Nucleic Acids Symp Ser; 1995 Jun 18; (33):40-2. PubMed ID: 8643392
    [Abstract] [Full Text] [Related]

  • 17. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F, Quevillon S, Kerjan P, Mirande M.
    Biochemistry; 1998 Aug 11; 37(32):11309-14. PubMed ID: 9698378
    [Abstract] [Full Text] [Related]

  • 18. Fusion with anticodon binding domain of GluRS is not sufficient to alter the substrate specificity of a chimeric Glu-Q-RS.
    Ray S, Blaise M, Roy B, Ghosh S, Kern D, Banerjee R.
    Protein J; 2014 Feb 11; 33(1):48-60. PubMed ID: 24374508
    [Abstract] [Full Text] [Related]

  • 19. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S, Lazard M, Delort F, Blanquet S, Plateau P.
    J Mol Biol; 1998 May 15; 278(4):801-13. PubMed ID: 9614943
    [Abstract] [Full Text] [Related]

  • 20. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A, Sissler M, Florentz C, Giegé R.
    Biochimie; 2004 Jan 15; 86(1):21-9. PubMed ID: 14987797
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 63.