These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


347 related items for PubMed ID: 16168476

  • 1. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J, Turteltaub SR, Ducheyne P.
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [Abstract] [Full Text] [Related]

  • 2. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study.
    Strange DG, Fisher ST, Boughton PC, Kishen TJ, Diwan AD.
    Spine J; 2010 Jul; 10(7):602-9. PubMed ID: 20547110
    [Abstract] [Full Text] [Related]

  • 3. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK, Kim YE, Wang KC.
    Spine (Phila Pa 1976); 2009 May 20; 34(12):1281-6. PubMed ID: 19455003
    [Abstract] [Full Text] [Related]

  • 4. Experimental and model determination of human intervertebral disc osmoviscoelasticity.
    Schroeder Y, Elliott DM, Wilson W, Baaijens FP, Huyghe JM.
    J Orthop Res; 2008 Aug 20; 26(8):1141-6. PubMed ID: 18327799
    [Abstract] [Full Text] [Related]

  • 5. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY, Kang H, Rouleau JP, Hollister SJ, Marca FL.
    Spine (Phila Pa 1976); 2009 Jul 01; 34(15):1554-60. PubMed ID: 19564765
    [Abstract] [Full Text] [Related]

  • 6. Shear mechanical properties of human lumbar annulus fibrosus.
    Iatridis JC, Kumar S, Foster RJ, Weidenbaum M, Mow VC.
    J Orthop Res; 1999 Sep 01; 17(5):732-7. PubMed ID: 10569484
    [Abstract] [Full Text] [Related]

  • 7. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E, Arnoux PJ, Garo A, El-Rich M, Aubin CE.
    J Biomech Eng; 2011 Oct 01; 133(10):101007. PubMed ID: 22070332
    [Abstract] [Full Text] [Related]

  • 8. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM, Kelly TA, Guo XE, Ateshian GA, Hung CT.
    Spine (Phila Pa 1976); 2006 Jul 01; 31(15):E486-93. PubMed ID: 16816748
    [Abstract] [Full Text] [Related]

  • 9. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG.
    Spine (Phila Pa 1976); 1993 Sep 01; 18(11):1531-41. PubMed ID: 8235826
    [Abstract] [Full Text] [Related]

  • 10. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation.
    Malandrino A, Planell JA, Lacroix D.
    J Biomech; 2009 Dec 11; 42(16):2780-8. PubMed ID: 19796766
    [Abstract] [Full Text] [Related]

  • 11. The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis.
    Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ.
    Clin Biomech (Bristol); 2007 Nov 11; 22(9):988-98. PubMed ID: 17822814
    [Abstract] [Full Text] [Related]

  • 12. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA, Auerbach JD, Balderston RA, Kurtz SM.
    Spine (Phila Pa 1976); 2008 Nov 01; 33(23):2510-7. PubMed ID: 18978591
    [Abstract] [Full Text] [Related]

  • 13. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM, Bonassar LJ.
    J Biomech Eng; 2009 Jun 01; 131(6):061014. PubMed ID: 19449968
    [Abstract] [Full Text] [Related]

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M, Zdero R, Schemitsch EH, Zalzal P.
    J Biomech Eng; 2007 Feb 01; 129(1):12-9. PubMed ID: 17227093
    [Abstract] [Full Text] [Related]

  • 15. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model.
    Chagnon A, Aubin CE, Villemure I.
    J Biomech Eng; 2010 Nov 01; 132(11):111006. PubMed ID: 21034147
    [Abstract] [Full Text] [Related]

  • 16. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device.
    Heuer F, Schmitt H, Schmidt H, Claes L, Wilke HJ.
    Clin Biomech (Bristol); 2007 Aug 01; 22(7):737-44. PubMed ID: 17561321
    [Abstract] [Full Text] [Related]

  • 17. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M, Natarajan RN, Chaudhary G, An HS, Andersson GB.
    Med Eng Phys; 2011 May 01; 33(4):438-45. PubMed ID: 21167763
    [Abstract] [Full Text] [Related]

  • 18. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A, Zander T, Bergmann G.
    Clin Biomech (Bristol); 2006 Mar 01; 21(3):221-7. PubMed ID: 16356613
    [Abstract] [Full Text] [Related]

  • 19. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading.
    Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ.
    Spine (Phila Pa 1976); 2007 Apr 01; 32(7):748-55. PubMed ID: 17414908
    [Abstract] [Full Text] [Related]

  • 20. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.
    Chen WM, Park C, Lee K, Lee S.
    Spine (Phila Pa 1976); 2009 Sep 15; 34(20):E716-23. PubMed ID: 19752690
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.