These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 16171379
1. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase. Hecky J, Müller KM. Biochemistry; 2005 Sep 27; 44(38):12640-54. PubMed ID: 16171379 [Abstract] [Full Text] [Related]
2. A general method of terminal truncation, evolution, and re-elongation to generate enzymes of enhanced stability. Hecky J, Mason JM, Arndt KM, Müller KM. Methods Mol Biol; 2007 Sep 27; 352():275-304. PubMed ID: 17041271 [Abstract] [Full Text] [Related]
3. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. Kather I, Jakob RP, Dobbek H, Schmid FX. J Mol Biol; 2008 Oct 31; 383(1):238-51. PubMed ID: 18706424 [Abstract] [Full Text] [Related]
9. Functional analyses of AmpC beta-lactamase through differential stability. Beadle BM, McGovern SL, Patera A, Shoichet BK. Protein Sci; 1999 Sep 01; 8(9):1816-24. PubMed ID: 10493583 [Abstract] [Full Text] [Related]
10. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Zhang ZG, Yi ZL, Pei XQ, Wu ZL. Bioresour Technol; 2010 Dec 01; 101(23):9272-8. PubMed ID: 20691586 [Abstract] [Full Text] [Related]
11. Enhancing the thermostability of a novel beta-agarase AgaB through directed evolution. Shi C, Lu X, Ma C, Ma Y, Fu X, Yu W. Appl Biochem Biotechnol; 2008 Oct 01; 151(1):51-9. PubMed ID: 18785021 [Abstract] [Full Text] [Related]
12. The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. Zaccolo M, Gherardi E. J Mol Biol; 1999 Jan 15; 285(2):775-83. PubMed ID: 9878443 [Abstract] [Full Text] [Related]
13. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Hild E, Brumbley SM, O'Shea MG, Nevalainen H, Bergquist PL. Appl Microbiol Biotechnol; 2007 Jul 15; 75(5):1071-8. PubMed ID: 17426967 [Abstract] [Full Text] [Related]
16. Circularly permuted beta-lactamase from Staphylococcus aureus PC1. Pieper U, Hayakawa K, Li Z, Herzberg O. Biochemistry; 1997 Jul 22; 36(29):8767-74. PubMed ID: 9220963 [Abstract] [Full Text] [Related]
17. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Adediran SA, Zhang Z, Nukaga M, Palzkill T, Pratt RF. Biochemistry; 2005 May 24; 44(20):7543-52. PubMed ID: 15895997 [Abstract] [Full Text] [Related]
19. Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Xiong AS, Peng RH, Cheng ZM, Li Y, Liu JG, Zhuang J, Gao F, Xu F, Qiao YS, Zhang Z, Chen JM, Yao QH. Protein Eng Des Sel; 2007 Jul 24; 20(7):319-25. PubMed ID: 17557766 [Abstract] [Full Text] [Related]
20. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus. Ausili A, Cobucci-Ponzano B, Di Lauro B, D'Avino R, Scirè A, Rossi M, Tanfani F, Moracci M. Biochimie; 2006 Jul 24; 88(7):807-17. PubMed ID: 16494988 [Abstract] [Full Text] [Related] Page: [Next] [New Search]