These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
405 related items for PubMed ID: 16171601
1. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis. Myers SI, Wang L, Liu F, Bartula LL. J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601 [Abstract] [Full Text] [Related]
2. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. Myers SI, Wang L, Liu F, Bartula LL. J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177 [Abstract] [Full Text] [Related]
3. Loss of renal function and microvascular blood flow after suprarenal aortic clamping and reperfusion (SPACR) above the superior mesenteric artery is greatly augmented compared with SPACR above the renal arteries. Myers SI, Wang L, Myers DJ. J Vasc Surg; 2007 Feb; 45(2):357-66. PubMed ID: 17264017 [Abstract] [Full Text] [Related]
4. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. Myers SI, Wang L, Liu F, Bartula LL. J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873 [Abstract] [Full Text] [Related]
5. Autoregulation of renal and splanchnic blood flow following infra-renal aortic clamping is mediated by nitric oxide and vasodilator prostanoids. Myers SI, Turnage RH, Hernandez R, Castenada A, Valentine RJ. J Cardiovasc Surg (Torino); 1996 Apr; 37(2):97-103. PubMed ID: 8675533 [Abstract] [Full Text] [Related]
6. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction. Walkowska A, Dobrowolski L, Kompanowska-Jezierska E, Sadowski J. Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166 [Abstract] [Full Text] [Related]
9. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation. Zou AP, Wu F, Cowley AW. Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315 [Abstract] [Full Text] [Related]
10. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats. Walkowska A, Kompanowska-Jezierska E, Sadowski J. Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725 [Abstract] [Full Text] [Related]
13. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity. Persson P, Fasching A, Teerlink T, Hansell P, Palm F. Am J Physiol Renal Physiol; 2017 Feb 01; 312(2):F278-F283. PubMed ID: 27927650 [Abstract] [Full Text] [Related]
15. The intrarenal blood flow distribution and role of nitric oxide in diabetic rats. Nakanishi K, Onuma S, Higa M, Nagai Y, Inokuchi T. Metabolism; 2005 Jun 01; 54(6):788-92. PubMed ID: 15931616 [Abstract] [Full Text] [Related]
16. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat. Ahmeda AF, Johns EJ. Acta Physiol (Oxf); 2012 Mar 01; 204(3):443-50. PubMed ID: 21827636 [Abstract] [Full Text] [Related]