These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


102 related items for PubMed ID: 16178064

  • 1. Differential effects of two blockers of small conductance Ca2+-activated K+ channels, apamin and lei-Dab7, on learning and memory in rats.
    Mpari B, Regaya I, Escoffier G, Mourre C.
    J Integr Neurosci; 2005 Sep; 4(3):381-96. PubMed ID: 16178064
    [Abstract] [Full Text] [Related]

  • 2. Small-conductance Ca(2+)-activated K(+) channels: Heterogeneous affinity in rat brain structures and cognitive modulation by specific blockers.
    Mpari B, Sreng L, Regaya I, Mourre C.
    Eur J Pharmacol; 2008 Jul 28; 589(1-3):140-8. PubMed ID: 18561910
    [Abstract] [Full Text] [Related]

  • 3. Correspondences between the binding characteristics of a non-natural peptide, Lei-Dab7, and the distribution of SK subunits in the rat central nervous system.
    Aidi-Knani S, Pezard L, Mpari B, Ben Hamida J, Sabatier JM, Mourre C, Regaya I.
    Eur J Pharmacol; 2015 Apr 05; 752():106-11. PubMed ID: 25704615
    [Abstract] [Full Text] [Related]

  • 4. Apamin improves reference memory but not procedural memory in rats by blocking small conductance Ca(2+)-activated K(+) channels in an olfactory discrimination task.
    Fournier C, Kourrich S, Soumireu-Mourat B, Mourre C.
    Behav Brain Res; 2001 Jun 05; 121(1-2):81-93. PubMed ID: 11275286
    [Abstract] [Full Text] [Related]

  • 5. Kaliotoxin, a Kv1.1 and Kv1.3 channel blocker, improves associative learning in rats.
    Kourrich S, Mourre C, Soumireu-Mourat B.
    Behav Brain Res; 2001 Apr 08; 120(1):35-46. PubMed ID: 11173083
    [Abstract] [Full Text] [Related]

  • 6. Small conductance Ca2+-activated K+ channels as targets of CNS drug development.
    Blank T, Nijholt I, Kye MJ, Spiess J.
    Curr Drug Targets CNS Neurol Disord; 2004 Jun 08; 3(3):161-7. PubMed ID: 15180477
    [Abstract] [Full Text] [Related]

  • 7. Hypobaric Hypoxia-Induced Learning and Memory Impairment: Elucidating the Role of Small Conductance Ca2+-Activated K+ Channels.
    Kushwah N, Jain V, Dheer A, Kumar R, Prasad D, Khan N.
    Neuroscience; 2018 Sep 15; 388():418-429. PubMed ID: 30048783
    [Abstract] [Full Text] [Related]

  • 8. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H, Grissmer S.
    Toxicon; 2004 Jun 15; 43(8):951-60. PubMed ID: 15208028
    [Abstract] [Full Text] [Related]

  • 9. Blocking SK channels impairs long-term memory formation in young chicks.
    Baker KD, Edwards TM, Rickard NS.
    Behav Brain Res; 2011 Jan 01; 216(1):458-62. PubMed ID: 20678527
    [Abstract] [Full Text] [Related]

  • 10. Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones.
    Pedarzani P, Kulik A, Muller M, Ballanyi K, Stocker M.
    J Physiol; 2000 Sep 01; 527 Pt 2(Pt 2):283-90. PubMed ID: 10970429
    [Abstract] [Full Text] [Related]

  • 11. Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory.
    Murthy SR, Sherrin T, Jansen C, Nijholt I, Robles M, Dolga AM, Andreotti N, Sabatier JM, Knaus HG, Penner R, Todorovic C, Blank T.
    PLoS One; 2015 Sep 01; 10(5):e0127264. PubMed ID: 25938421
    [Abstract] [Full Text] [Related]

  • 12. Small conductance calcium-activated K+ channels, SkCa, but not voltage-gated K+ (Kv) channels, are implicated in the antinociception induced by CGS21680, a A2A adenosine receptor agonist.
    Regaya I, Pham T, Andreotti N, Sauze N, Carrega L, Martin-Eauclaire MF, Jouirou B, Peragut JC, Vacher H, Rochat H, Devaux C, Sabatier JM, Guieu R.
    Life Sci; 2004 Dec 10; 76(4):367-77. PubMed ID: 15530499
    [Abstract] [Full Text] [Related]

  • 13. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.
    Hammond RS, Bond CT, Strassmaier T, Ngo-Anh TJ, Adelman JP, Maylie J, Stackman RW.
    J Neurosci; 2006 Feb 08; 26(6):1844-53. PubMed ID: 16467533
    [Abstract] [Full Text] [Related]

  • 14. Learning-induced modulation of SK channels-mediated effect on synaptic transmission.
    Brosh I, Rosenblum K, Barkai E.
    Eur J Neurosci; 2007 Dec 08; 26(11):3253-60. PubMed ID: 18005060
    [Abstract] [Full Text] [Related]

  • 15. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones.
    Hosseini R, Benton DC, Dunn PM, Jenkinson DH, Moss GW.
    J Physiol; 2001 Sep 01; 535(Pt 2):323-34. PubMed ID: 11533126
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels.
    Castle NA, London DO, Creech C, Fajloun Z, Stocker JW, Sabatier JM.
    Mol Pharmacol; 2003 Feb 01; 63(2):409-18. PubMed ID: 12527813
    [Abstract] [Full Text] [Related]

  • 19. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata.
    Yanovsky Y, Zhang W, Misgeld U.
    Neuroscience; 2005 Feb 01; 136(4):1027-36. PubMed ID: 16203104
    [Abstract] [Full Text] [Related]

  • 20. In vivo pharmacological manipulation of small conductance Ca(2+)-activated K(+) channels influences motor behavior, object memory and fear conditioning.
    Vick KA, Guidi M, Stackman RW.
    Neuropharmacology; 2010 Mar 01; 58(3):650-9. PubMed ID: 19944112
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.