These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 16178230
1. Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics. Schmidt-Mende L, Kroeze JE, Durrant JR, Nazeeruddin MK, Grätzel M. Nano Lett; 2005 Jul; 5(7):1315-20. PubMed ID: 16178230 [Abstract] [Full Text] [Related]
2. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M. Nat Mater; 2003 Jun; 2(6):402-7. PubMed ID: 12754500 [Abstract] [Full Text] [Related]
3. Dye-sensitized solar cells incorporating a "liquid" hole-transporting material. Snaith HJ, Zakeeruddin SM, Wang Q, Péchy P, Grätzel M. Nano Lett; 2006 Sep; 6(9):2000-3. PubMed ID: 16968015 [Abstract] [Full Text] [Related]
4. Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Kuang D, Klein C, Snaith HJ, Moser JE, Humphry-Baker R, Comte P, Zakeeruddin SM, Grätzel M. Nano Lett; 2006 Apr; 6(4):769-73. PubMed ID: 16608281 [Abstract] [Full Text] [Related]
5. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties. Lee JW, Hwang KJ, Park DW, Park KH, Shim WG, Kim SC. J Nanosci Nanotechnol; 2007 Nov; 7(11):3717-21. PubMed ID: 18047044 [Abstract] [Full Text] [Related]
6. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2. Pavasupree S, Ngamsinlapasathian S, Suzuki Y, Yoshikawa S. J Nanosci Nanotechnol; 2006 Dec; 6(12):3685-92. PubMed ID: 17256316 [Abstract] [Full Text] [Related]
7. Flexible dye sensitised nanocrystalline semiconductor solar cells. Haque SA, Palomares E, Upadhyaya HM, Otley L, Potter RJ, Holmes AB, Durrant JR. Chem Commun (Camb); 2003 Dec 21; (24):3008-9. PubMed ID: 14703831 [Abstract] [Full Text] [Related]
8. Solar cells: later rather than sooner. Moser JE. Nat Mater; 2005 Oct 21; 4(10):723-4. PubMed ID: 16195761 [No Abstract] [Full Text] [Related]
9. Nanofabrication of organic/inorganic hybrids of TiO2 with substituted phthalocyanine or polythiophene. Ding H, Ram MK, Nicolini C. J Nanosci Nanotechnol; 2001 Jun 21; 1(2):207-13. PubMed ID: 12914053 [Abstract] [Full Text] [Related]
10. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Park DW, Park KH, Lee JW, Hwang KJ, Choi YK. J Nanosci Nanotechnol; 2007 Nov 21; 7(11):3722-6. PubMed ID: 18047045 [Abstract] [Full Text] [Related]
18. Quantum dots on gold: electrodes for photoswitchable cytochrome C electrochemistry. Stoll C, Kudera S, Parak WJ, Lisdat F. Small; 2006 Jun 21; 2(6):741-3. PubMed ID: 17193115 [No Abstract] [Full Text] [Related]
19. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy. Liu Y, Jennings JR, Zakeeruddin SM, Grätzel M, Wang Q. J Am Chem Soc; 2013 Mar 13; 135(10):3939-52. PubMed ID: 23425317 [Abstract] [Full Text] [Related]
20. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Hu L, Dai S, Weng J, Xiao S, Sui Y, Huang Y, Chen S, Kong F, Pan X, Liang L, Wang K. J Phys Chem B; 2007 Jan 18; 111(2):358-62. PubMed ID: 17214486 [Abstract] [Full Text] [Related] Page: [Next] [New Search]