These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 16190438
1. High-resolution imaging characterization of bladder dynamic morphophysiology by time-lapse optical coherence tomography. Pan YT, Wu Q, Wang ZG, Brink PR, Du CW. Opt Lett; 2005 Sep 01; 30(17):2263-5. PubMed ID: 16190438 [Abstract] [Full Text] [Related]
2. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Adler DC, Ko TH, Fujimoto JG. Opt Lett; 2004 Dec 15; 29(24):2878-80. PubMed ID: 15645810 [Abstract] [Full Text] [Related]
3. Subcellular imaging of epithelium with time-lapse optical coherence tomography. Pan YT, Wu ZL, Yuan ZJ, Wang ZG, Du CW. J Biomed Opt; 2007 Dec 15; 12(5):050504. PubMed ID: 17994860 [Abstract] [Full Text] [Related]
7. Optical assessment of tissue anisotropy in ex vivo distended rat bladders. Alali S, Aitken KJ, Schröder A, Bagli DJ, Alex Vitkin I. J Biomed Opt; 2012 Aug 15; 17(8):086010. PubMed ID: 23224197 [Abstract] [Full Text] [Related]
8. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform. Chitchian S, Fiddy M, Fried NM. Annu Int Conf IEEE Eng Med Biol Soc; 2008 Aug 15; 2008():3016-9. PubMed ID: 19163341 [Abstract] [Full Text] [Related]
9. High-resolution frequency-domain second-harmonic optical coherence tomography. Su J, Tomov IV, Jiang Y, Chen Z. Appl Opt; 2007 Apr 01; 46(10):1770-5. PubMed ID: 17356620 [Abstract] [Full Text] [Related]
11. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM. J Biomed Opt; 2008 Apr 01; 13(2):024003. PubMed ID: 18465966 [Abstract] [Full Text] [Related]
12. Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography. Aguirre AD, Chen Y, Fujimoto JG, Ruvinskaya L, Devor A, Boas DA. Opt Lett; 2006 Dec 01; 31(23):3459-61. PubMed ID: 17099749 [Abstract] [Full Text] [Related]
13. Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation. Xie T, Wang Z, Pan Y. Appl Opt; 2005 Jul 10; 44(20):4272-80. PubMed ID: 16045215 [Abstract] [Full Text] [Related]
15. Automated segmentation of the macula by optical coherence tomography. Fabritius T, Makita S, Miura M, Myllylä R, Yasuno Y. Opt Express; 2009 Aug 31; 17(18):15659-69. PubMed ID: 19724565 [Abstract] [Full Text] [Related]
16. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. Opt Lett; 2006 Aug 01; 31(15):2308-10. PubMed ID: 16832468 [Abstract] [Full Text] [Related]
17. Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder. Cauberg EC, de Bruin DM, Faber DJ, de Reijke TM, Visser M, de la Rosette JJ, van Leeuwen TG. J Biomed Opt; 2010 Aug 01; 15(6):066013. PubMed ID: 21198187 [Abstract] [Full Text] [Related]
18. Delineation of an oral cancer lesion with swept-source optical coherence tomography. Tsai MT, Lee HC, Lu CW, Wang YM, Lee CK, Yang CC, Chiang CP. J Biomed Opt; 2008 Aug 01; 13(4):044012. PubMed ID: 19021340 [Abstract] [Full Text] [Related]
19. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Srinivasan VJ, Huber R, Gorczynska I, Fujimoto JG, Jiang JY, Reisen P, Cable AE. Opt Lett; 2007 Feb 15; 32(4):361-3. PubMed ID: 17356653 [Abstract] [Full Text] [Related]
20. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography. Blazkiewicz P, Gourlay M, Tucker JR, Rakic AD, Zvyagin AV. Appl Opt; 2005 Dec 20; 44(36):7722-9. PubMed ID: 16381518 [Abstract] [Full Text] [Related] Page: [Next] [New Search]