These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


448 related items for PubMed ID: 16197512

  • 1. Different function of pedunculopontine GABA and glutamate receptors in nucleus accumbens dopamine, pedunculopontine glutamate and operant discriminative behavior.
    Steiniger-Brach B, Kretschmer BD.
    Eur J Neurosci; 2005 Oct; 22(7):1720-30. PubMed ID: 16197512
    [Abstract] [Full Text] [Related]

  • 2. Dopamine and GABA increases produced by activation of glutamate receptors in the nucleus accumbens are decreased during aging.
    Segovia G, Mora F.
    Neurobiol Aging; 2005 Jan; 26(1):91-101. PubMed ID: 15585349
    [Abstract] [Full Text] [Related]

  • 3. Glutamate and GABA modulate dopamine in the pedunculopontine tegmental nucleus.
    Steiniger B, Kretschmer BD.
    Exp Brain Res; 2003 Apr; 149(4):422-30. PubMed ID: 12677322
    [Abstract] [Full Text] [Related]

  • 4. Effects of repeated cocaine on medial prefrontal cortical GABAB receptor modulation of neurotransmission in the mesocorticolimbic dopamine system.
    Jayaram P, Steketee JD.
    J Neurochem; 2004 Aug; 90(4):839-47. PubMed ID: 15287889
    [Abstract] [Full Text] [Related]

  • 5. Effects of aging on the interaction between glutamate, dopamine, and GABA in striatum and nucleus accumbens of the awake rat.
    Segovia G, Del Arco A, Mora F.
    J Neurochem; 1999 Nov; 73(5):2063-72. PubMed ID: 10537066
    [Abstract] [Full Text] [Related]

  • 6. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission.
    Leonetti M, Desvignes C, Bougault I, Souilhac J, Oury-Donat F, Steinberg R.
    Neuroscience; 2006 Nov; 137(2):555-64. PubMed ID: 16289893
    [Abstract] [Full Text] [Related]

  • 7. Involvement of the ventral tegmental area in locomotion elicited from the nucleus accumbens or ventral pallidum.
    Johnson K, Churchill L, Klitenick MA, Hooks MS, Kalivas PW.
    J Pharmacol Exp Ther; 1996 May; 277(2):1122-31. PubMed ID: 8627524
    [Abstract] [Full Text] [Related]

  • 8. Behavioral and neurochemical studies of opioid effects in the pedunculopontine nucleus and mediodorsal thalamus.
    Klitenick MA, Kalivas PW.
    J Pharmacol Exp Ther; 1994 Apr; 269(1):437-48. PubMed ID: 8169850
    [Abstract] [Full Text] [Related]

  • 9. Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior.
    Yun IA, Nicola SM, Fields HL.
    Eur J Neurosci; 2004 Jul; 20(1):249-63. PubMed ID: 15245497
    [Abstract] [Full Text] [Related]

  • 10. Gaba(A) receptors in the pedunculopontine tegmental nucleus play a crucial role in rat shell-specific dopamine-mediated, but not shell-specific acetylcholine-mediated, turning behaviour.
    Ikeda H, Akiyama G, Matsuzaki S, Sato M, Koshikawa N, Cools AR.
    Neuroscience; 2004 Jul; 125(3):553-62. PubMed ID: 15099669
    [Abstract] [Full Text] [Related]

  • 11. Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: studies on the involvement of dopamine.
    Reid MS, Hsu K, Berger SP.
    Synapse; 1997 Oct; 27(2):95-105. PubMed ID: 9266771
    [Abstract] [Full Text] [Related]

  • 12. Chronic treatment with a dopamine uptake blocker changes dopamine and acetylcholine but not glutamate and GABA concentrations in prefrontal cortex, striatum and nucleus accumbens of the awake rat.
    Hernández LF, Segovia G, Mora F.
    Neurochem Int; 2008 Feb; 52(3):457-69. PubMed ID: 17881090
    [Abstract] [Full Text] [Related]

  • 13. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.
    Fusa K, Takahashi I, Watanabe S, Aono Y, Ikeda H, Saigusa T, Nagase H, Suzuki T, Koshikawa N, Cools AR.
    Neuroscience; 2005 Feb; 130(3):745-55. PubMed ID: 15590157
    [Abstract] [Full Text] [Related]

  • 14. Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress.
    Doherty M, Gratton A.
    Brain Res; 2007 May 30; 1150():62-8. PubMed ID: 17395162
    [Abstract] [Full Text] [Related]

  • 15. Morphine causes a delayed increase in glutamate receptor functioning in the nucleus accumbens core.
    Jacobs EH, Wardeh G, Smit AB, Schoffelmeer AN.
    Eur J Pharmacol; 2005 Mar 21; 511(1):27-30. PubMed ID: 15777776
    [Abstract] [Full Text] [Related]

  • 16. Glutamate and dopamine in nucleus accumbens core and shell: sequence learning versus performance.
    Bauter MR, Brockel BJ, Pankevich DE, Virgolini MB, Cory-Slechta DA.
    Neurotoxicology; 2003 Mar 21; 24(2):227-43. PubMed ID: 12606295
    [Abstract] [Full Text] [Related]

  • 17. Bar pressing for food: differential consequences of lesions to the anterior versus posterior pedunculopontine.
    Wilson DI, MacLaren DA, Winn P.
    Eur J Neurosci; 2009 Aug 21; 30(3):504-13. PubMed ID: 19614747
    [Abstract] [Full Text] [Related]

  • 18. Endogenous histamine inhibits the development of morphine-induced conditioned place preference.
    Gong YX, Lv M, Zhu YP, Zhu YY, Wei EQ, Shi H, Zeng QL, Chen Z.
    Acta Pharmacol Sin; 2007 Jan 21; 28(1):10-8. PubMed ID: 17184577
    [Abstract] [Full Text] [Related]

  • 19. An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats.
    Alderson HL, Latimer MP, Blaha CD, Phillips AG, Winn P.
    Neuroscience; 2004 Jan 21; 125(2):349-58. PubMed ID: 15062978
    [Abstract] [Full Text] [Related]

  • 20. Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study.
    Segovia KN, Correa M, Salamone JD.
    Neuroscience; 2011 Nov 24; 196():178-88. PubMed ID: 21884757
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.