These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
91 related items for PubMed ID: 16199261
1. Role of the T cell receptor alpha chain in the development and phenotype of naturally arising CD4+CD25+ T cells. Bosco N, Hung HC, Pasqual N, Jouvin-Marche E, Marche PN, Gascoigne NR, Ceredig R. Mol Immunol; 2006 Feb; 43(3):246-54. PubMed ID: 16199261 [Abstract] [Full Text] [Related]
2. In-vitro generation and characterisation of murine CD4+CD25+ regulatory T cells with indirect allospecificity. Tsang J, Jiang S, Tanriver Y, Leung E, Lombardi G, Lechler RI. Int Immunopharmacol; 2006 Dec 20; 6(13-14):1883-8. PubMed ID: 17161341 [Abstract] [Full Text] [Related]
3. Reactivity of naive CD4+CD25- T cells against gut microflora in healthy mice. Gad M, Lundsgaard D, Kjellev S, Kristensen NN, Seremet T, Straten PT, Claesson MH. Int Immunol; 2006 May 20; 18(5):817-25. PubMed ID: 16574668 [Abstract] [Full Text] [Related]
4. Impact of early expression of TCR alpha chain on thymocyte development. Huang CY, Kanagawa O. Eur J Immunol; 2004 Jun 20; 34(6):1532-41. PubMed ID: 15162422 [Abstract] [Full Text] [Related]
5. Alteration of T-cell receptor repertoires during thymic T-cell development. Matsutani T, Ohmori T, Ogata M, Soga H, Yoshioka T, Suzuki R, Itoh T. Scand J Immunol; 2006 Jul 20; 64(1):53-60. PubMed ID: 16784491 [Abstract] [Full Text] [Related]
6. TCRalphabeta repertoire diversity of human naturally occurring CD4+CD25+ regulatory T cells. Fujishima M, Hirokawa M, Fujishima N, Sawada K. Immunol Lett; 2005 Jul 15; 99(2):193-7. PubMed ID: 16009270 [Abstract] [Full Text] [Related]
7. Deficiency in NOD antigen-presenting cell function may be responsible for suboptimal CD4+CD25+ T-cell-mediated regulation and type 1 diabetes development in NOD mice. Alard P, Manirarora JN, Parnell SA, Hudkins JL, Clark SL, Kosiewicz MM. Diabetes; 2006 Jul 15; 55(7):2098-105. PubMed ID: 16804081 [Abstract] [Full Text] [Related]
8. Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions. Okui T, Ito H, Honda T, Amanuma R, Yoshie H, Yamazaki K. Oral Microbiol Immunol; 2008 Feb 15; 23(1):49-54. PubMed ID: 18173798 [Abstract] [Full Text] [Related]
9. Neutralization of interleukin-2 retards the growth of mouse renal cancer. Fukuhara H, Matsumoto A, Kitamura T, Takeuchi T. BJU Int; 2006 Jun 15; 97(6):1314-21. PubMed ID: 16686731 [Abstract] [Full Text] [Related]
10. Induction of eye-derived tolerance does not depend on naturally occurring CD4+CD25+ T regulatory cells. Keino H, Takeuchi M, Kezuka T, Hattori T, Usui M, Taguchi O, Streilein JW, Stein-Streilein J. Invest Ophthalmol Vis Sci; 2006 Mar 15; 47(3):1047-55. PubMed ID: 16505040 [Abstract] [Full Text] [Related]
11. The phenotype and survival of antigen-stimulated transgenic CD4 T cells in vivo: the influence of persisting antigen. Yang CP, Sparshott SM, Duffy D, Garside P, Bell EB. Int Immunol; 2006 Apr 15; 18(4):515-23. PubMed ID: 16481344 [Abstract] [Full Text] [Related]
12. Regulation of the TCRalpha repertoire by the survival window of CD4(+)CD8(+) thymocytes. Guo J, Hawwari A, Li H, Sun Z, Mahanta SK, Littman DR, Krangel MS, He YW. Nat Immunol; 2002 May 15; 3(5):469-76. PubMed ID: 11967541 [Abstract] [Full Text] [Related]
13. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. Delgado M, Chorny A, Gonzalez-Rey E, Ganea D. J Leukoc Biol; 2005 Dec 15; 78(6):1327-38. PubMed ID: 16204628 [Abstract] [Full Text] [Related]
14. CD4+ CD25+ [corrected] regulatory T cells render naive CD4+ CD25- T cells anergic and suppressive. Qiao M, Thornton AM, Shevach EM. Immunology; 2007 Apr 15; 120(4):447-55. PubMed ID: 17244157 [Abstract] [Full Text] [Related]
15. Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25- effector and naturally occurring CD4+CD25+ regulatory T cells function. de León J, Fernández A, Clavell M, Labrada M, Bebelagua Y, Mesa C, Fernández LE. Int Immunol; 2008 Apr 15; 20(4):591-600. PubMed ID: 18310617 [Abstract] [Full Text] [Related]
16. Requirement of CD28 signaling in homeostasis/survival of TGF-beta converted CD4+CD25+ Tregs from thymic CD4+CD25- single positive T cells. Liu Y, Amarnath S, Chen W. Transplantation; 2006 Oct 15; 82(7):953-64. PubMed ID: 17038912 [Abstract] [Full Text] [Related]
17. Characterization of mouse CD4 T cell subsets defined by expression of KLRG1. Beyersdorf N, Ding X, Tietze JK, Hanke T. Eur J Immunol; 2007 Dec 15; 37(12):3445-54. PubMed ID: 18034419 [Abstract] [Full Text] [Related]
18. The role of CD4CD25 T cells in autoantibody production in murine lupus. Hsu WT, Suen JL, Chiang BL. Clin Exp Immunol; 2006 Sep 15; 145(3):513-9. PubMed ID: 16907921 [Abstract] [Full Text] [Related]
19. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Pyzik M, Piccirillo CA. J Leukoc Biol; 2007 Aug 15; 82(2):335-46. PubMed ID: 17475784 [Abstract] [Full Text] [Related]
20. Burn injury induces an early activation response by lymph node CD4+ T cells. Purcell EM, Dolan SM, Kriynovich S, Mannick JA, Lederer JA. Shock; 2006 Feb 15; 25(2):135-40. PubMed ID: 16525351 [Abstract] [Full Text] [Related] Page: [Next] [New Search]