These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 16207483
21. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents. Wolak M, van Eldik R. Chemistry; 2007; 13(17):4873-83. PubMed ID: 17366654 [Abstract] [Full Text] [Related]
22. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance. Rusevova K, Kopinke FD, Georgi A. J Hazard Mater; 2012 Nov 30; 241-242():433-40. PubMed ID: 23098995 [Abstract] [Full Text] [Related]
23. The impact of surfactants on Fe(III)-TAML-catalyzed oxidations by peroxides: accelerations, decelerations, and loss of activity. Banerjee D, Apollo FM, Ryabov AD, Collins TJ. Chemistry; 2009 Oct 05; 15(39):10199-209. PubMed ID: 19711381 [Abstract] [Full Text] [Related]
24. Kinetic spectrophotometric determination of Fe(II) in the presence of Fe(III) by H-point standard addition method in mixed micellar medium. Hasani M, Rezaei A, Abdollahi H. Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov 05; 68(3):414-9. PubMed ID: 17329160 [Abstract] [Full Text] [Related]
25. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND. Biochemistry; 2003 Mar 18; 42(10):3142-50. PubMed ID: 12627982 [Abstract] [Full Text] [Related]
26. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple. Gendel Y, Levi N, Lahav O. Environ Sci Technol; 2009 Nov 01; 43(21):8315-9. PubMed ID: 19924962 [Abstract] [Full Text] [Related]
27. EDTA and electricity synergetic catalyzed Fe(3+)/H2O2 process for amoxicillin oxidation. Shen TT, Li XM, Tang YF, Wang J, Yue X, Cao JB, Zheng W, Wang DB, Zeng GM. Water Sci Technol; 2009 Nov 01; 60(3):761-70. PubMed ID: 19657172 [Abstract] [Full Text] [Related]
28. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Rastogi A, Al-Abed SR, Dionysiou DD. Water Res; 2009 Feb 01; 43(3):684-94. PubMed ID: 19038413 [Abstract] [Full Text] [Related]
29. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: photoformation of iron(II) and hydrogen peroxide. Ou X, Quan X, Chen S, Zhao H, Zhang Y. J Agric Food Chem; 2007 Oct 17; 55(21):8650-6. PubMed ID: 17892253 [Abstract] [Full Text] [Related]
30. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions. Quici N, Litter MI. Photochem Photobiol Sci; 2009 Jul 17; 8(7):975-84. PubMed ID: 19582273 [Abstract] [Full Text] [Related]
31. Kinetic micellar effects in tetradecyltrimethylammonium bromide-pentanol micellar solutions. Rodríguez A, Múñoz M, Graciani Mdel M, Moyá ML. J Colloid Interface Sci; 2002 Apr 15; 248(2):455-61. PubMed ID: 16290550 [Abstract] [Full Text] [Related]
32. Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe+3-resin/H2O2. Liou RM, Chen SH, Hung MY, Hsu CS. Chemosphere; 2004 Jun 15; 55(9):1271-80. PubMed ID: 15081768 [Abstract] [Full Text] [Related]
33. Lead(II)-catalyzed oxidation of guanine in solution studied with electrospray ionization mass spectrometry. Banu L, Blagojevic V, Bohme DK. J Phys Chem B; 2012 Oct 04; 116(39):11791-7. PubMed ID: 22946584 [Abstract] [Full Text] [Related]
34. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice. Takahama U, Hirota S. Chem Res Toxicol; 2012 Jan 13; 25(1):207-15. PubMed ID: 22145785 [Abstract] [Full Text] [Related]
35. Rapid and quantitative activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide. Jiang W, Xie J, Nørgaard H, Bollinger JM, Krebs C. Biochemistry; 2008 Apr 15; 47(15):4477-83. PubMed ID: 18358006 [Abstract] [Full Text] [Related]
36. Chemical oxidation of 2,4-dimethylphenol in soil by heterogeneous Fenton process. Romero A, Santos A, Vicente F. J Hazard Mater; 2009 Mar 15; 162(2-3):785-90. PubMed ID: 18602751 [Abstract] [Full Text] [Related]
37. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant. Woodward JJ, Chang MM, Martin NI, Marletta MA. J Am Chem Soc; 2009 Jan 14; 131(1):297-305. PubMed ID: 19128180 [Abstract] [Full Text] [Related]
38. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations. Ghodbane H, Hamdaoui O. Ultrason Sonochem; 2009 Jun 14; 16(5):593-8. PubMed ID: 19109046 [Abstract] [Full Text] [Related]
39. pH-specific synthetic chemistry and solution studies in the binary system of iron(III) with the alpha-hydroxycarboxylate substrate quinic acid: potential relevance to iron chemistry in plant fluids. Menelaou M, Mateescu C, Zhao H, Rodriguez-Escudero I, Lalioti N, Sanakis Y, Simopoulos A, Salifoglou A. Inorg Chem; 2009 Mar 02; 48(5):1844-56. PubMed ID: 19235948 [Abstract] [Full Text] [Related]
40. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor. Li Y, Machala L, Yan W. Environ Sci Technol; 2016 Feb 02; 50(3):1190-9. PubMed ID: 26713453 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]