These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 16215271

  • 1. Defense and resistance-inducing activities in tobacco of the sulfated beta-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule.
    Ménard R, de Ruffray P, Fritig B, Yvin JC, Kauffmann S.
    Plant Cell Physiol; 2005 Dec; 46(12):1964-72. PubMed ID: 16215271
    [Abstract] [Full Text] [Related]

  • 2. Beta-1,3 glucan sulfate, but not beta-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis.
    Ménard R, Alban S, de Ruffray P, Jamois F, Franz G, Fritig B, Yvin JC, Kauffmann S.
    Plant Cell; 2004 Nov; 16(11):3020-32. PubMed ID: 15494557
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens.
    Moeder W, Yoshioka K, Klessig DF.
    Mol Plant Microbe Interact; 2005 Feb; 18(2):116-24. PubMed ID: 15720080
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance.
    Song F, Goodman RM.
    Mol Plant Microbe Interact; 2001 Dec; 14(12):1458-62. PubMed ID: 11768542
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.
    Alamillo JM, Saénz P, García JA.
    Plant J; 2006 Oct; 48(2):217-27. PubMed ID: 17018032
    [Abstract] [Full Text] [Related]

  • 11. Accumulation of the two transcripts of the N gene, conferring resistance to tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death.
    Takabatake R, Seo S, Mitsuhara I, Tsuda S, Ohashi Y.
    Plant Cell Physiol; 2006 Feb; 47(2):254-61. PubMed ID: 16361321
    [Abstract] [Full Text] [Related]

  • 12. Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance.
    Jovel J, Walker M, Sanfaçon H.
    Mol Plant Microbe Interact; 2011 Jun; 24(6):706-18. PubMed ID: 21281112
    [Abstract] [Full Text] [Related]

  • 13. Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone.
    Pruss GJ, Nester EW, Vance V.
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1528-38. PubMed ID: 18986249
    [Abstract] [Full Text] [Related]

  • 14. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco.
    Kim CY, Zhang S.
    Plant J; 2004 Apr; 38(1):142-51. PubMed ID: 15053767
    [Abstract] [Full Text] [Related]

  • 15. Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1->3)-glucanase activity at the onset of tobacco defence reactions.
    Rivière MP, Marais A, Ponchet M, Willats W, Galiana E.
    J Exp Bot; 2008 Apr; 59(6):1225-39. PubMed ID: 18390849
    [Abstract] [Full Text] [Related]

  • 16. Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism.
    Shinya T, Gális I, Narisawa T, Sasaki M, Fukuda H, Matsuoka H, Saito M, Matsuoka K.
    Plant Cell Physiol; 2007 Oct; 48(10):1404-13. PubMed ID: 17761750
    [Abstract] [Full Text] [Related]

  • 17. Pathogen resistance of transgenic tobacco plants producing caffeine.
    Kim YS, Sano H.
    Phytochemistry; 2008 Feb; 69(4):882-8. PubMed ID: 18036626
    [Abstract] [Full Text] [Related]

  • 18. [Transgenic tobacco plants with ribosome inactivating protein gene cassin from Cassia occidentalis and their resistance to tobacco mosaic virus].
    Ruan XL, Liu LF, Li HP.
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):517-23. PubMed ID: 18349505
    [Abstract] [Full Text] [Related]

  • 19. [Construction and analysis of transgenic plants of Nicotiana tabacum L. expressing a bacterial gene for beta-1,3-glucanase. II. Transgenic tobacco plants expressing the bacterial beta-glucanase gene from Clostridium thermocellum,--a model for studying the differential expression of stress response-related genes].
    Darbinian NS, Popov IuG, Mochul'skiĭ AV, Oming D, Piruzian ES, Vasilevko VT.
    Genetika; 1996 Feb; 32(2):204-10. PubMed ID: 8713621
    [Abstract] [Full Text] [Related]

  • 20. Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions.
    Li JG, Cao J, Sun FF, Niu DD, Yan F, Liu HX, Guo JH.
    Phytopathology; 2011 Oct; 101(10):1202-8. PubMed ID: 21585268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.