These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


463 related items for PubMed ID: 16217617

  • 21. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents.
    Patel AV, Huang T, Krimm RF.
    J Comp Neurol; 2010 Aug 15; 518(16):3290-301. PubMed ID: 20575060
    [Abstract] [Full Text] [Related]

  • 22. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties.
    Al-Hadlaq SM, Bradley RM, MacCallum DK, Mistretta CM.
    Neuroscience; 2003 Aug 15; 118(1):145-59. PubMed ID: 12676146
    [Abstract] [Full Text] [Related]

  • 23. Brain-derived neurotrophic factor is present in adult mouse taste cells with synapses.
    Yee CL, Jones KR, Finger TE.
    J Comp Neurol; 2003 Apr 21; 459(1):15-24. PubMed ID: 12629664
    [Abstract] [Full Text] [Related]

  • 24. Role of brain-derived neurotrophic factor in target invasion in the gustatory system.
    Ringstedt T, Ibáñez CF, Nosrat CA.
    J Neurosci; 1999 May 01; 19(9):3507-18. PubMed ID: 10212310
    [Abstract] [Full Text] [Related]

  • 25. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):11-24. PubMed ID: 12454993
    [Abstract] [Full Text] [Related]

  • 26. Regeneration of fungiform taste buds: temporal and spatial characteristics.
    Cheal M, Oakley B.
    J Comp Neurol; 1977 Apr 15; 172(4):609-26. PubMed ID: 838892
    [Abstract] [Full Text] [Related]

  • 27. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA.
    Auton Neurosci; 2006 Jun 30; 126-127():9-29. PubMed ID: 16677865
    [Abstract] [Full Text] [Related]

  • 28. Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development.
    Uchida N, Kanazawa M, Suzuki Y, Takeda M.
    Arch Histol Cytol; 2003 Mar 30; 66(1):17-25. PubMed ID: 12703550
    [Abstract] [Full Text] [Related]

  • 29. Early development and innervation of taste bud-bearing papillae on the rat tongue.
    Farbman AI, Mbiene JP.
    J Comp Neurol; 1991 Feb 08; 304(2):172-86. PubMed ID: 2016415
    [Abstract] [Full Text] [Related]

  • 30. Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds.
    Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I.
    Int J Dev Neurosci; 1997 Jul 08; 15(4-5):563-76. PubMed ID: 9263033
    [Abstract] [Full Text] [Related]

  • 31. Epithelial overexpression of BDNF and NT4 produces distinct gustatory axon morphologies that disrupt initial targeting.
    Lopez GF, Krimm RF.
    Dev Biol; 2006 Apr 15; 292(2):457-68. PubMed ID: 16500639
    [Abstract] [Full Text] [Related]

  • 32. The effect of brain-derived neurotrophic factor on sensory and autonomic function after lingual nerve repair.
    Yates JM, Smith KG, Robinson PP.
    Exp Neurol; 2004 Dec 15; 190(2):495-505. PubMed ID: 15530888
    [Abstract] [Full Text] [Related]

  • 33. An electrophysiological study into the effect of neurotrophin-3 on functional recovery after lingual nerve repair.
    Robinson PP, Yates JM, Smith KG.
    Arch Oral Biol; 2004 Oct 15; 49(10):763-75. PubMed ID: 15308420
    [Abstract] [Full Text] [Related]

  • 34. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN, Krimm RF, Whitehead MC.
    J Neurosci; 2007 Dec 12; 27(50):13875-81. PubMed ID: 18077699
    [Abstract] [Full Text] [Related]

  • 35. Dystonin deficiency reduces taste buds and fungiform papillae in the anterior part of the tongue.
    Ichikawa H, Terayama R, Yamaai T, De Repentigny Y, Kothary R, Sugimoto T.
    Brain Res; 2007 Jan 19; 1129(1):142-6. PubMed ID: 17156752
    [Abstract] [Full Text] [Related]

  • 36. The morphogenesis of mouse vallate gustatory epithelium and taste buds requires BDNF-dependent taste neurons.
    Oakley B, Brandemihl A, Cooper D, Lau D, Lawton A, Zhang C.
    Brain Res Dev Brain Res; 1998 Jan 14; 105(1):85-96. PubMed ID: 9473602
    [Abstract] [Full Text] [Related]

  • 37. Immunohistochemical, electrophysiological, and electron microscopical study of rat fungiform taste buds after regeneration of chorda tympani through the non-gustatory lingual nerve.
    Montavon P, Hellekant G, Farbman A.
    J Comp Neurol; 1996 Apr 15; 367(4):491-502. PubMed ID: 8731221
    [Abstract] [Full Text] [Related]

  • 38. Morphometric and immunocytochemical assessment of fungiform taste buds after interruption of the chorda-lingual nerve.
    Oakley B, Lawton A, Riddle DR, Wu LH.
    Microsc Res Tech; 1993 Oct 15; 26(3):187-95. PubMed ID: 8241558
    [Abstract] [Full Text] [Related]

  • 39. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP, Mistretta CM.
    Acta Anat (Basel); 1997 Oct 15; 160(3):139-58. PubMed ID: 9718388
    [Abstract] [Full Text] [Related]

  • 40. Functional redundancy and gustatory development in bdnf null mutant mice.
    Cooper D, Oakley B.
    Brain Res Dev Brain Res; 1998 Jan 14; 105(1):79-84. PubMed ID: 9473598
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.