These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 16217642
1. The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study. Emerson JP, Wagner ML, Reynolds MF, Que L, Sadowsky MJ, Wackett LP. J Biol Inorg Chem; 2005 Nov; 10(7):751-60. PubMed ID: 16217642 [Abstract] [Full Text] [Related]
2. 4-nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes. Reynolds MF, Costas M, Ito M, Jo DH, Tipton AA, Whiting AK, Que L. J Biol Inorg Chem; 2003 Feb; 8(3):263-72. PubMed ID: 12589562 [Abstract] [Full Text] [Related]
3. Manganese(II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L. Biochemistry; 1996 Jan 09; 35(1):160-70. PubMed ID: 8555170 [Abstract] [Full Text] [Related]
4. A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. Boldt YR, Sadowsky MJ, Ellis LB, Que L, Wackett LP. J Bacteriol; 1995 Mar 09; 177(5):1225-32. PubMed ID: 7868595 [Abstract] [Full Text] [Related]
5. Manganese(II) active site mutants of 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis strain CM-2. Boldt YR, Whiting AK, Wagner ML, Sadowsky MJ, Que L, Wackett LP. Biochemistry; 1997 Feb 25; 36(8):2147-53. PubMed ID: 9047314 [Abstract] [Full Text] [Related]
6. Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen activation without a change in metal redox state. Emerson JP, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L. Proc Natl Acad Sci U S A; 2008 May 27; 105(21):7347-52. PubMed ID: 18492808 [Abstract] [Full Text] [Related]
7. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S. Biochemistry; 2004 Nov 16; 43(45):14485-99. PubMed ID: 15533053 [Abstract] [Full Text] [Related]
8. In vivo self-hydroxylation of an iron-substituted manganese-dependent extradiol cleaving catechol dioxygenase. Farquhar ER, Emerson JP, Koehntop KD, Reynolds MF, Trmčić M, Que L. J Biol Inorg Chem; 2011 Apr 16; 16(4):589-97. PubMed ID: 21279661 [Abstract] [Full Text] [Related]
10. Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. Wang YZ, Lipscomb JD. Protein Expr Purif; 1997 Jun 16; 10(1):1-9. PubMed ID: 9179284 [Abstract] [Full Text] [Related]
11. Nuclear Resonance Vibrational Spectroscopy Definition of O2 Intermediates in an Extradiol Dioxygenase: Correlation to Crystallography and Reactivity. Sutherlin KD, Wasada-Tsutsui Y, Mbughuni MM, Rogers MS, Park K, Liu LV, Kwak Y, Srnec M, Böttger LH, Frenette M, Yoda Y, Kobayashi Y, Kurokuzu M, Saito M, Seto M, Hu M, Zhao J, Alp EE, Lipscomb JD, Solomon EI. J Am Chem Soc; 2018 Dec 05; 140(48):16495-16513. PubMed ID: 30418018 [Abstract] [Full Text] [Related]
12. Theoretical study of the catalytic reaction mechanism of MndD. Georgiev V, Borowski T, Siegbahn PE. J Biol Inorg Chem; 2006 Jul 05; 11(5):571-85. PubMed ID: 16791641 [Abstract] [Full Text] [Related]
13. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Mendel S, Arndt A, Bugg TD. Biochemistry; 2004 Oct 26; 43(42):13390-6. PubMed ID: 15491145 [Abstract] [Full Text] [Related]
18. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme. Groce SL, Lipscomb JD. J Am Chem Soc; 2003 Oct 01; 125(39):11780-1. PubMed ID: 14505375 [Abstract] [Full Text] [Related]
19. Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity. Schlosrich J, Eley KL, Crowley PJ, Bugg TD. Chembiochem; 2006 Dec 01; 7(12):1899-908. PubMed ID: 17051653 [Abstract] [Full Text] [Related]
20. Characterization of an O2 adduct of an active cobalt-substituted extradiol-cleaving catechol dioxygenase. Fielding AJ, Lipscomb JD, Que L. J Am Chem Soc; 2012 Jan 18; 134(2):796-9. PubMed ID: 22175783 [Abstract] [Full Text] [Related] Page: [Next] [New Search]