These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 16218577
1. Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Lodeiro S, Schulz-Gasch T, Matsuda SP. J Am Chem Soc; 2005 Oct 19; 127(41):14132-3. PubMed ID: 16218577 [Abstract] [Full Text] [Related]
5. Mechanistic insights into oxidosqualene cyclizations through homology modeling. Schulz-Gasch T, Stahl M. J Comput Chem; 2003 Apr 30; 24(6):741-53. PubMed ID: 12666166 [Abstract] [Full Text] [Related]
6. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase. Liu YT, Hu TC, Chang CH, Shie WS, Wu TK. Org Lett; 2012 Oct 19; 14(20):5222-5. PubMed ID: 23043506 [Abstract] [Full Text] [Related]
7. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992 [Abstract] [Full Text] [Related]
13. A putative precursor of isomalabaricane triterpenoids from lanosterol synthase mutants. Lodeiro S, Wilson WK, Shan H, Matsuda SP. Org Lett; 2006 Feb 02; 8(3):439-42. PubMed ID: 16435854 [Abstract] [Full Text] [Related]
14. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. Wu TK, Chang CH, Liu YT, Wang TT. Chem Rec; 2008 Feb 02; 8(5):302-25. PubMed ID: 18956480 [Abstract] [Full Text] [Related]
15. Oryza sativa Parkeol Cyclase: Changes in the Substrate-Folding Conformation and the Deprotonation Sites on Mutation at Tyr257: Importance of the Hydroxy Group and Steric Bulk. Suzuki A, Aikawa Y, Ito R, Hoshino T. Chembiochem; 2019 Nov 18; 20(22):2862-2875. PubMed ID: 31180162 [Abstract] [Full Text] [Related]
16. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions. Wu TK, Yu MT, Liu YT, Chang CH, Wang HJ, Diau EW. Org Lett; 2006 Mar 30; 8(7):1319-22. PubMed ID: 16562881 [Abstract] [Full Text] [Related]
17. Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I. Biochem Biophys Res Commun; 2010 Jan 01; 391(1):899-902. PubMed ID: 19951700 [Abstract] [Full Text] [Related]
18. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. Gas-Pascual E, Berna A, Bach TJ, Schaller H. PLoS One; 2014 Jan 01; 9(10):e109156. PubMed ID: 25343375 [Abstract] [Full Text] [Related]
19. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions. Wu TK, Liu YT, Chiu FH, Chang CH. Org Lett; 2006 Oct 12; 8(21):4691-4. PubMed ID: 17020279 [Abstract] [Full Text] [Related]
20. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. Wu TK, Liu YT, Chang CH, Yu MT, Wang HJ. J Am Chem Soc; 2006 May 17; 128(19):6414-9. PubMed ID: 16683806 [Abstract] [Full Text] [Related] Page: [Next] [New Search]